Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Квадрат вписан в равнобедренный прямоугольный треугольник, причём одна вершина квадрата расположена на гипотенузе, противоположная ей вершина совпадает с вершиной прямого угла треугольника, а остальные лежат на катетах. Найдите сторону квадрата, если катет треугольника равен a.

Вниз   Решение


У Винтика и у Шпунтика есть по три палочки суммарной длины 1 метр у каждого. И Винтик, и Шпунтик могут сложить из трёх своих палочек треугольник. Ночью в их дом прокрался Незнайка, взял по одной палочке у Винтика и у Шпунтика и поменял их местами. Наутро оказалось, что Винтик не может сложить из своих палочек треугольник. Можно ли гарантировать, что Шпунтик из своих — сможет?

Вверх   Решение

Задачи

Страница: << 183 184 185 186 187 188 189 >> [Всего задач: 1982]      



Задача 86118

Темы:   [ Системы тригонометрических уравнений и неравенств ]
[ Производная и экстремумы ]
Сложность: 3+
Классы: 11

Числа a и b таковы, что первое уравнение системы
{ sin x+a=bx
cos x=b

имеет ровно два решения. Докажите, что система имеет хотя бы одно решение.
Прислать комментарий     Решение


Задача 86124

Темы:   [ Системы тригонометрических уравнений и неравенств ]
[ Производная и экстремумы ]
Сложность: 3+
Классы: 11

Числа a и b таковы, что первое уравнение системы
{ cos x=ax+b
sin x+a=0

имеет ровно два решения. Докажите, что система имеет хотя бы одно решение.
Прислать комментарий     Решение


Задача 105126

Темы:   [ Процессы и операции ]
[ Полуинварианты ]
Сложность: 3+
Классы: 7,8,9

Шеренга новобранцев стояла лицом к сержанту. По команде "налево" некоторые повернулись налево, некоторые - направо, а остальные - кругом. Всегда ли сержант сможет встать в строй так, чтобы с обеих сторон от него оказалось поровну новобранцев, стоящих к нему лицом?
Прислать комментарий     Решение


Задача 105152

Тема:   [ Задачи с неравенствами. Разбор случаев ]
Сложность: 3+
Классы: 7,8,9

В магазине три этажа, перемещаться между которыми можно только на лифте. Исследование посещаемости этажей магазина показало, что с начала рабочего дня и до закрытия магазина:
  1) из покупателей, входящих в лифт на втором этаже, половина едет на первый этаж, а половина – на третий;
  2) среди покупателей, выходящих из лифта, меньше трети делает это на третьем этаже.
На какой этаж покупатели чаще ездили с первого этажа, на второй или на третий?

Прислать комментарий     Решение

Задача 105200

Тема:   [ Взвешивания ]
Сложность: 3+
Классы: 7,8,9

Девять одинаковых по виду монет расположены по кругу. Пять из них настоящие, а четыре — фальшивые. Никакие две фальшивые монеты не лежат рядом. Настоящие монеты весят одинаково, и фальшивые — одинаково (фальшивая монета тяжелее настоящей). Как за два взвешивания на чашечных весах без гирь определить все фальшивые монеты?
Прислать комментарий     Решение


Страница: << 183 184 185 186 187 188 189 >> [Всего задач: 1982]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .