Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

На лужайке босоногих мальчиков столько же, сколько обутых девочек. Кого на лужайке больше — девочек или босоногих детей?

Вниз   Решение


Дан равнобедренный треугольник ABC, в котором  ∠B = 120°.  На продолжениях сторон AB и CB за точку B взяли точки P и Q соответственно так, что лучи AQ и CP пересекаются под прямым углом. Докажите, что  ∠PQB = 2∠PCQ.

ВверхВниз   Решение


Квадратный лист бумаги согнули по прямой так, что одна из вершин квадрата оказалась на несмежной стороне. При этом образовалось три треугольника. В эти треугольники вписали окружности (см. рис.). Докажите, что радиус одной из этих окружностей равен сумме радиусов двух других.

ВверхВниз   Решение


Два лесоруба, Иван и Прохор, работали вместе в лесу и сели перекусить. У Ивана было 4 лепешки, а у Прохора — 8. Тут к ним подошел охотник.
— Вот, братцы, заблудился в лесу, до деревни далеко, а есть очень хочется. Пожалуйста, поделитесь со мной хлебом-солью!
— Ну что ж, садись, чем богаты, тем и рады, — сказали лесорубы.
Двенадцать лепешек были разделены поровну на троих. После еды охотник пошарил в карманах, нашел гривенник и полтинник и сказал:
— Не обессудьте, братцы, больше ничего нет. Поделитесь, как знаете!
Охотник ушел, а лесорубы заспорили. Прохор говорит: — По-моему, деньги надо разделить поровну! А Иван ему возражает: — За 12 лепешек — 60 к., значит за каждую лепешку по 5 к. Раз у тебя было 8 лепешек — тебе 40 к., у меня 4 лепешки — мне 20 к.! А как бы Вы разделили эти деньги между лесорубами?

ВверхВниз   Решение


Назовём натуральное семизначное число удачным, если оно делится на произведение всех своих цифр. Существуют ли четыре последовательных удачных числа?

ВверхВниз   Решение


Автор: Шмаров В.

На окружности, описанной около прямоугольника ABCD, выбрана точка K. Оказалось, что прямая CK пересекает отрезок AD в такой точке M, что
AM : MD = 2.  Пусть O – центр прямоугольника. Докажите, что точка пересечения медиан треугольника OKD лежит на описанной окружности треугольника COD.

ВверхВниз   Решение


Маленький Петя подпилил все ножки у квадратной табуретки и четыре отпиленных кусочка потерял. Оказалось, что длины всех кусочков различны, и что табуретка после этого стоит на полу, пусть наклонно, но по-прежнему касаясь пола всеми четырьмя концами ножек. Дедушка решил починить табуретку, однако нашёл только три кусочка с длинами 8, 9 и 10 см. Какой длины может быть четвёртый кусочек?

ВверхВниз   Решение


Имеются 6 запертых чемоданов и 6 ключей к ним. При этом неизвестно, к какому чемодану подходит какой ключ. Какое наименьшее число попыток надо сделать, чтобы наверняка открыть все чемоданы? А сколько понадобится попыток, если ключей и чемоданов будет не по 6, а по 10?

ВверхВниз   Решение


Вычислите:  

ВверхВниз   Решение


Пусть число α задаётся десятичной дробью
  а) 0,101001000100001000001...;
  б) 0,123456789101112131415....
Будет ли это число рациональным?

ВверхВниз   Решение


Каждой паре чисел x и y поставлено в соответствие некоторое число x*y. Найдите 1993*1935, если известно, что для любых трёх чисел x, y, z  выполнены тождества:  x*x = 0  и  x*(y*z) = (x*y) + z.

ВверхВниз   Решение


Дан треугольник ABC. Прямая l касается вписанной в него окружности. Обозначим через la, lb, lc прямые, симметричные l относительно биссектрис внешних углов треугольника. Докажите, что треугольник, образованный этими прямыми, равен треугольнику ABC.

ВверхВниз   Решение


Найдите наибольшее натуральное число, из которого вычеркиванием цифр нельзя получить число, кратное 11.

ВверхВниз   Решение


Внутри каждой грани единичного куба выбрали по точке. Затем каждые две точки, лежащие на соседних гранях, соединили отрезком.
Докажите, что сумма длин этих отрезков не меньше, чем    .

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 116719  (#1)

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Задачи с неравенствами. Разбор случаев ]
[ Комбинаторика (прочее) ]
Сложность: 4-
Классы: 10,11

В команде сторожей у каждого есть разряд (натуральное число). Сторож N-го разряда N суток дежурит, потом N суток спит, снова N суток дежурит, N – спит, и так далее. Известно, что разряды любых двух сторожей различаются хотя бы в три раза. Может ли такая команда осуществлять ежедневное дежурство? (Приступить к дежурству сторожа могут не одновременно, в один день могут дежурить несколько сторожей.)

Прислать комментарий     Решение

Задача 116725  (#2)

Темы:   [ Системы точек и отрезков (прочее) ]
[ Сумма длин диагоналей четырехугольника ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 10,11

Внутри круга отмечены 100 точек, никакие три из которых не лежат на одной прямой.
Докажите, что их можно разбить на пары и провести прямую через каждую пару так, чтобы все точки пересечения прямых были в круге.

Прислать комментарий     Решение

Задача 116726  (#3)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 4
Классы: 10,11

Докажите, что для любого натурального n существуют такие целые числа  a1, a2, ..., an,  что при всех целых x число
(...((x² + a1)² + a2)² + ... + an–1)² + an   делится на  2n – 1.

Прислать комментарий     Решение

Задача 116727  (#4)

Темы:   [ Куб ]
[ Ломаные внутри квадрата ]
[ Неравенство Коши ]
[ Симметриия и неравенства и экстремумы ]
Сложность: 4-
Классы: 10,11

Внутри каждой грани единичного куба выбрали по точке. Затем каждые две точки, лежащие на соседних гранях, соединили отрезком.
Докажите, что сумма длин этих отрезков не меньше, чем    .

Прислать комментарий     Решение

Задача 116688  (#5)

Темы:   [ Вписанные и описанные окружности ]
[ Свойства биссектрис, конкуррентность ]
[ Ортоцентр и ортотреугольник ]
[ ГМТ - окружность или дуга окружности ]
[ Соображения непрерывности ]
Сложность: 5-
Классы: 8,9,10

Дан треугольник ABC. Прямая l касается вписанной в него окружности. Обозначим через la, lb, lc прямые, симметричные l относительно биссектрис внешних углов треугольника. Докажите, что треугольник, образованный этими прямыми, равен треугольнику ABC.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .