Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Автор: Акопян Э.

Петя утверждает, что он сумел согнуть бумажный равносторонний треугольник так, что получился четырёхугольник, причём всюду трёхслойный.
Как это могло получиться?

Вниз   Решение


Дан треугольник ABC и прямая l, пересекающая прямые BC, AC, AB в точках La, Lb, Lc. Перпендикуляр, восставленный из точки La к BC, пересекает AB и AC в точках Ab и Ac соответственно. Точка Oa – центр описанной окружности треугольника AAbAc. Аналогично определим Ob и Oc. Докажите, что Oa, Ob и Oc лежат на одной прямой.

ВверхВниз   Решение


Даны окружность S и точки A и B вне ее. Для каждой прямой l, проходящей через точку A и пересекающей окружность S в точках M и N, рассмотрим описанную окружность треугольника BMN. Докажите, что все эти окружности имеют общую точку, отличную от точки B.

ВверхВниз   Решение


Докажите неравенство  ( + )8 ≥ 64xy(x + y)²   (x, y ≥ 0).

ВверхВниз   Решение


Дан неравнобедренный остроугольный треугольник ABC, BB1 – его симедиана, луч BB1 вторично пересекает описанную окружность Ω в точке L. Пусть HA, HB, HC – основания высот треугольника ABC, а луч BHB вторично пересекает Ω в точке T. Докажите, что точки HA, HC, T, L лежат на одной окружности.

ВверхВниз   Решение


Автор: Хилько Д.

На стороне BC треугольника ABC взята произвольная точка D. Через D и A проведены окружности ω1 и ω2 так, что прямая BA касается ω1, прямая CA касается ω2. BX – вторая касательная, проведённая из точки B к окружности ω1, CY – вторая касательная, проведённая из точки C к окружности ω2. Докажите, что описанная окружность треугольника XDY касается прямой BC.

ВверхВниз   Решение


BB1 и CC1 – высоты треугольника ABC. Касательные к описанной окружности треугольника AB1C1 в точках B1 и C1 пересекают прямые AB и AC в точках M и N соответственно. Докажите, что вторая точка пересечения описанных окружностей треугольников AMN и AB1C1 лежит на прямой Эйлера треугольника ABC.

ВверхВниз   Решение


Сколько существует двузначных чисел, у которых цифра десятков больше цифры единиц?

ВверхВниз   Решение


Вписанная окружность ω треугольника ABC касается сторон BC, AC и AB в точках A0, B0 и C0 соответственно. Биссектрисы углов B и C пересекают серединный перпендикуляр к отрезку AA0 в точках Q и P соответственно. Докажите, что прямые PC0 и QB0 пересекаются на окружности ω.

ВверхВниз   Решение


Вокруг прямоугольного треугольника ABC с прямым углом C описана окружность, на меньших дугах AC и BC взяты их середины – K и P соответственно. Отрезок KP пересекает катет AC в точке N. Центр вписанной окружности треугольника ABC – I. Найти угол NIC.

ВверхВниз   Решение


Встречается ли в треугольнике Паскаля число 1999?

ВверхВниз   Решение


Двое лыжников шли с постоянной скоростью 6 км/ч на расстоянии 200 метров друг от друга. Потом они стали подниматься в большую горку, и скорость упала до 4 км/ч. Потом оба лыжника съехали с горки со скоростью 7 км/ч и попали в глубокий снег, где их скорость стала всего 3 км/ч.
Каким стало расстояние между ними?

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 58]      



Задача 32781

Тема:   [ Задачи на движение ]
Сложность: 3
Классы: 7,8,9

Двое лыжников шли с постоянной скоростью 6 км/ч на расстоянии 200 метров друг от друга. Потом они стали подниматься в большую горку, и скорость упала до 4 км/ч. Потом оба лыжника съехали с горки со скоростью 7 км/ч и попали в глубокий снег, где их скорость стала всего 3 км/ч.
Каким стало расстояние между ними?

Прислать комментарий     Решение

Задача 32791

Темы:   [ Задачи на проценты и отношения ]
[ Формула включения-исключения ]
Сложность: 3
Классы: 7,8,9

Трое сумасшедших маляров принялись красить пол каждый в свой цвет. Один успел закрасить красным 75% пола, другой зелёным – 70%, третий синим – 65%. Какая часть пола заведомо закрашена всеми тремя красками?

Прислать комментарий     Решение

Задача 32797

Тема:   [ Задачи на движение ]
Сложность: 3
Классы: 7,8,9

Клайв прокрутил минутную стрелку, так же как в задаче 32796.)
  а) Сколько раз за это время минутная стрелка совпала с часовой?
  б) В какие моменты это происходило?

Прислать комментарий     Решение

Задача 32798

Тема:   [ Теорема о промежуточном значении. Связность ]
Сложность: 3
Классы: 7,8

(Продолжение задачи 32796)
  Стоя в углу, Клайв разобрал свои наручные часы, чтобы посмотреть, как они устроены. Собирая их обратно, он произвольно надел часовую и минутную стрелки. Сможет ли он так повернуть циферблат, чтобы хоть раз в сутки часы показывали правильное время (часы при этом еще не заведены)?

Прислать комментарий     Решение

Задача 32800

Темы:   [ НОД и НОК. Взаимная простота ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 7,8

Очень скучно смотреть на черно-белый циферблат, поэтому Клайв ровно в полдень закрасил число 12 красным цветом и решил через каждые 57 часов закрашивать текущий час в красный цвет.
  а) Сколько чисел на циферблате окажутся покрашенными?
  б) Сколько окажется красных чисел, если Клайв будет красить их каждый 1913-й час?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 58]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .