Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Докажите следующие формулы:

an+1bn+1 = (a – b)(an + an–1b + ... + bn);

a2n+1 + b2n+1 = (a + b)(a2na2n–1b + a2n–2b2 – ... + b2n).

Вниз   Решение


Натуральные числа x, y, z таковы, что  x² + y² = z².  Докажите, что хотя бы одно из этих чисел делится на 3.

ВверхВниз   Решение


Докажите, что при центральной симметрии окружность переходит в окружность.

ВверхВниз   Решение


Из пункта A в пункт B выехал велосипедист. Одновременно из пункта B в пункт A навстречу велосипедисту вышел пешеход. После их встречи велосипедист повернул обратно, а пешеход продолжил свой путь. Известно, что велосипедист вернулся в пункт A на 30 минут раньше пешехода, при этом его скорость была в 5 раз больше скорости пешехода. Сколько времени затратил пешеход на путь из A в B?

ВверхВниз   Решение


Стороны BA, AC и CB равностороннего треугольника продолжены соответственно за точки A, C и B, на продолжениях отложены равные отрезки AD, CE и BF. Докажите, что треугольник DEF – равносторонний.

ВверхВниз   Решение


a и b – натуральные числа, причём число  a² + b²  делится на 21. Докажите, что оно делится и на 441.

ВверхВниз   Решение


Прямая, проходящая через центры двух окружностей называется их линией центров.
Докажите, что общие внешние (внутренние) касательные к двум окружностям пересекаются на линии центров этих окружностей.

ВверхВниз   Решение


Сколько существует пар натуральных чисел, у которых наименьшее общее кратное (НОК) равно 2000?

ВверхВниз   Решение


Окружность радиуса R, построенная на большем основании AD трапеции ABCD как на диаметре, касается меньшего основания BC в точке C, а боковой стороны AB — в точке A. Найдите диагонали трапеции.

ВверхВниз   Решение


В забеге шести спортсменов Андрей отстал от Бориса и между ними финишировали два спортсмена. Виктор финишировал после Дмитрия, но ранее Геннадия. Дмитрий опередил Бориса, но все же пришел после Евгения. Какое место занял каждый спортсмен?

ВверхВниз   Решение


a, b, c – целые числа, причём  a + b + c  делится на 6. Докажите, что  a³ + b³ + c³  тоже делится на 6.

ВверхВниз   Решение


В клетчатом квадрате со стороной 2018 часть клеток покрашены в белый цвет, остальные — в чёрный. Известно, что из этого квадрата можно вырезать квадрат $10\times 10$, все клетки которого белые, и квадрат $10\times 10$, все клетки которого чёрные. При каком наименьшем $d$ можно гарантировать, что из него можно вырезать квадрат $10\times 10$, в котором количество чёрных и белых клеток отличается не больше чем на $d$?

ВверхВниз   Решение


Жук ползёт по рёбрам куба. Сможет ли он последовательно обойти все рёбра, проходя по каждому ребру ровно один раз?

ВверхВниз   Решение


Точка $O$ — центр описанной окружности треугольника $ABC$, $AH$ — его высота. Точка $P$ — основание перпендикуляра, опущенного из точки $A$ на прямую $CO$. Докажите, что прямая $HP$ проходит через середину отрезка $AB$.

ВверхВниз   Решение


Окружность, вписанная в треугольник ABC касается его сторон AB и AC соответственно в точках M и N. Докажите, что  BN > MN.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник по углу, высоте и биссектрисе, проведённым из вершины этого угла.

Вверх   Решение

Задачи

Страница: << 83 84 85 86 87 88 89 >> [Всего задач: 6702]      



Задача 54529

Темы:   [ Построение треугольников по различным элементам ]
[ Прямоугольные треугольники ]
Сложность: 3-
Классы: 8,9

С помощью циркуля и линейки постройте треугольник по углу, высоте и биссектрисе, проведённым из вершины этого угла.

Прислать комментарий     Решение


Задача 54546

Тема:   [ Биссектриса угла (ГМТ) ]
Сложность: 3-
Классы: 8,9

Найдите геометрическое место точек, равноудалённых от двух пересекающихся прямых.

Прислать комментарий     Решение

Задача 54669

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Признаки и свойства касательной ]
Сложность: 3-
Классы: 8,9

Окружность радиуса R, построенная на большем основании AD трапеции ABCD как на диаметре, касается меньшего основания BC в точке C, а боковой стороны AB — в точке A. Найдите диагонали трапеции.

Прислать комментарий     Решение


Задача 54697

Темы:   [ Теорема косинусов ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3-
Классы: 8,9

Одна из сторон треугольника вдвое больше другой, а угол между этими сторонами равен 60o. Докажите, что треугольник — прямоугольный.

Прислать комментарий     Решение


Задача 54698

Тема:   [ Теорема косинусов ]
Сложность: 3-
Классы: 8,9

Сторона треугольника равна 2$ \sqrt{7}$, а две другие стороны образуют угол в 30o и относятся как 1 : 2$ \sqrt{3}$. Найдите эти стороны.

Прислать комментарий     Решение


Страница: << 83 84 85 86 87 88 89 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .