ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите следующие формулы: an+1 – bn+1 = (a – b)(an + an–1b + ... + bn); a2n+1 + b2n+1 = (a + b)(a2n – a2n–1b + a2n–2b2 – ... + b2n). Натуральные числа x, y, z таковы, что x² + y² = z². Докажите, что хотя бы одно из этих чисел делится на 3. Докажите, что при центральной симметрии окружность переходит в окружность.
Из пункта A в пункт B выехал велосипедист. Одновременно из пункта B в пункт A навстречу велосипедисту вышел пешеход. После их встречи велосипедист повернул обратно, а пешеход продолжил свой путь. Известно, что велосипедист вернулся в пункт A на 30 минут раньше пешехода, при этом его скорость была в 5 раз больше скорости пешехода. Сколько времени затратил пешеход на путь из A в B? Стороны BA, AC и CB равностороннего треугольника продолжены соответственно за точки A, C и B, на продолжениях отложены равные отрезки AD, CE и BF. Докажите, что треугольник DEF – равносторонний. a и b – натуральные числа, причём число a² + b² делится на 21. Докажите, что оно делится и на 441. Прямая, проходящая через центры двух окружностей называется их линией центров. Сколько существует пар натуральных чисел, у которых наименьшее общее кратное (НОК) равно 2000?
Окружность радиуса R, построенная на большем основании AD трапеции ABCD как на диаметре, касается меньшего основания BC в точке C, а боковой стороны AB — в точке A. Найдите диагонали трапеции.
В забеге шести спортсменов Андрей отстал от Бориса и между ними финишировали два спортсмена. Виктор финишировал после Дмитрия, но ранее Геннадия. Дмитрий опередил Бориса, но все же пришел после Евгения. Какое место занял каждый спортсмен? a, b, c – целые числа, причём a + b + c делится на 6. Докажите, что a³ + b³ + c³ тоже делится на 6. В клетчатом квадрате со стороной 2018 часть клеток покрашены в белый цвет, остальные — в чёрный. Известно, что из этого квадрата можно вырезать квадрат $10\times 10$, все клетки которого белые, и квадрат $10\times 10$, все клетки которого чёрные. При каком наименьшем $d$ можно гарантировать, что из него можно вырезать квадрат $10\times 10$, в котором количество чёрных и белых клеток отличается не больше чем на $d$? Жук ползёт по рёбрам куба. Сможет ли он последовательно обойти все рёбра, проходя по каждому ребру ровно один раз? Точка $O$ — центр описанной окружности треугольника $ABC$, $AH$ — его высота. Точка $P$ — основание перпендикуляра, опущенного из точки $A$ на прямую $CO$. Докажите, что прямая $HP$ проходит через середину отрезка $AB$. Окружность, вписанная в треугольник ABC касается его сторон AB и AC соответственно в точках M и N. Докажите, что BN > MN.
С помощью циркуля и линейки постройте треугольник по углу, высоте и биссектрисе, проведённым из вершины этого угла.
|
Страница: << 83 84 85 86 87 88 89 >> [Всего задач: 6702]
С помощью циркуля и линейки постройте треугольник по углу, высоте и биссектрисе, проведённым из вершины этого угла.
Найдите геометрическое место точек, равноудалённых от двух пересекающихся прямых.
Окружность радиуса R, построенная на большем основании AD трапеции ABCD как на диаметре, касается меньшего основания BC в точке C, а боковой стороны AB — в точке A. Найдите диагонали трапеции.
Одна из сторон треугольника вдвое больше другой, а угол между этими сторонами равен 60o. Докажите, что треугольник — прямоугольный.
Сторона треугольника равна 2
Страница: << 83 84 85 86 87 88 89 >> [Всего задач: 6702]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке