ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Главы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Точки A', B' и C' симметричны некоторой точке P
относительно сторон BC, CA и AB треугольника ABC.
|
Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 1956]
На сторонах BC, CA и AB треугольника ABC
взяты точки A1, B1 и C1. Докажите, что если
треугольники A1B1C1 и ABC подобны и противоположно
ориентированы, то описанные окружности треугольников
AB1C1, A1BC1
и A1B1C проходят через центр описанной окружности
треугольника ABC.
Точки A', B' и C' симметричны некоторой точке P
относительно сторон BC, CA и AB треугольника ABC.
Четыре прямые образуют четыре треугольника.
Прямая пересекает стороны AB, BC и CA
треугольника (или их продолжения) в точках C1, B1 и A1; O, Oa, Ob и Oc — центры описанных окружностей треугольников
ABC, AB1C1, A1BC1 и A1B1C; H, Ha, Hb и Hc — ортоцентры
этих треугольников. Докажите, что:
Четырехугольник ABCD вписанный. Докажите, что
точка Микеля для прямых, содержащих его стороны, лежит на
отрезке, соединяющем точки пересечения продолжений сторон.
Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 1956]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке