ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны два треугольника ABC и A1B1C1. Известно, что
прямые AA1, BB1 и CC1 пересекаются в одной точке O,
прямые AA1, BC1 и CB1 пересекаются в одной точке O1
и прямые AC1, BB1 и CA1 пересекаются в одной точке O2.
Докажите, что прямые AB1, BA1 и CC1 тоже пересекаются
в одной точке O3 (теорема о трижды перспективных треугольниках).
Докажите, что доску размером 10×10 клеток нельзя разрезать на фигурки в форме буквы T, состоящие из четырёх клеток. Две окружности, пересекающиеся в точке A, касаются окружности (или
прямой) S1 в точках B1 и C1, а окружности (или прямой) S2
в точках B2 и C2 (причем касание в B2 и C2 такое же,
как в B1 и C1). Докажите, что окружности, описанные вокруг
треугольников AB1C1 и AB2C2, касаются друг друга.
Существует ли треугольник, у которого все высоты
меньше 1 см, а площадь больше 1
м2?
Докажите, что
la В квадрате со стороной 1 расположена фигура,
расстояние между любыми двумя точками которой не равно 0, 001.
Докажите, что площадь этой фигуры не превосходит:
а) 0, 34; б) 0, 287.
С помощью одного циркуля постройте окружность, проходящую через три данные точки.
Точки K и M — середины сторон AB и CD
выпуклого четырехугольника ABCD, точки L и N расположены на
сторонах BC и AD так, что KLMN — прямоугольник.
Докажите, что площадь четырехугольника ABCD вдвое
больше площади прямоугольника KLMN.
Докажите, что сумма расстояний от любой точки внутри
треугольника до его вершин не меньше 6r.
Докажите, что:
На каждой стороне параллелограмма взято по точке.
Площадь четырехугольника с вершинами в этих точках равна половине
площади параллелограмма. Докажите, что хотя бы одна из диагоналей
четырехугольника параллельна стороне параллелограмма.
Внутри выпуклого четырехугольника ABCD существует
такая точка O, что площади треугольников
OAB, OBC, OCD и ODA равны.
Докажите, что одна из диагоналей четырехугольника делит другую пополам.
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 69]
Шестиугольник ABCDEF вписан в окружность.
Диагонали AD, BE и CF являются диаметрами этой окружности.
Докажите, что площадь шестиугольника ABCDEF равна
удвоенной площади треугольника ACE.
Внутри выпуклого четырехугольника ABCD существует
такая точка O, что площади треугольников
OAB, OBC, OCD и ODA равны.
Докажите, что одна из диагоналей четырехугольника делит другую пополам.
Высота трапеции, диагонали которой взаимно перпендикулярны, равна 4. Найдите площадь трапеции, если известно, что одна из её диагоналей равна 5.
Каждая диагональ выпуклого пятиугольника ABCDE
отсекает от него треугольник единичной площади. Вычислите
площадь пятиугольника ABCDE.
В прямоугольник ABCD вписаны два различных
прямоугольника, имеющих общую вершину K на стороне AB. Докажите,
что сумма их площадей равна площади прямоугольника ABCD.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 69]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке