Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 23 задачи
Версия для печати
Убрать все задачи

На каждой из двенадцати диагоналей граней куба выбирается произвольная точка. Определяется центр тяжести этих двенадцати точек.
Найдите геометрическое место всех таких центров тяжести.

Вниз   Решение


Вычислите суммы:

  а)  1 + a cos φ + ... + ak cos kφ + ... ( |a| < 1);

  б)  a sin φ + ... + ak sin kφ + ... ( |a| < 1);

  в)  

  г)  

ВверхВниз   Решение


а) Найдите сумму всех трёхзначных чисел, которые можно записать с помощью цифр 1, 2, 3, 4 (цифры могут повторяться).
б) Найдите сумму всех семизначных чисел, которые можно получить всевозможными перестановками цифр 1, ..., 7.

ВверхВниз   Решение


На листе бумаги нанесена сетка из n горизонтальных и n вертикальных прямых. Сколько различных замкнутых 2n-звенных ломаных можно провести по линиям сетки так, чтобы каждая ломаная проходила по всем горизонтальным и всем вертикальным прямым?

ВверхВниз   Решение


Из цифр 1, 2, 3, 4, 5, 6, 7 составляются всевозможные семизначные числа, в записи которых каждая из этих цифр встречается ровно один раз.
Доказать, что сумма всех таких чисел делится на 9.

ВверхВниз   Решение


Сколькими способами четыре чёрных шара, четыре белых шара и четыре синих шара можно разложить в шесть различных ящиков?

ВверхВниз   Решение


Доказать, что на сфере нельзя так расположить три дуги больших окружностей в 300o каждая, чтобы никакие две из них не имели ни общих точек, ни общих концов.

Примечание: Большая окружность – это окружность, полученная в сечении сферы плоскостью, проходящей через ее центр.

ВверхВниз   Решение


Окружности  $ \alpha$,$ \beta$,$ \gamma$ и $ \delta$ касаются данной окружности в вершинах A, B, C и D выпуклого четырехугольника ABCD. Пусть  t$\scriptstyle \alpha$$\scriptstyle \beta$ — длина общей касательной к окружностям $ \alpha$ и $ \beta$ (внешней, если оба касания внутренние или внешние одновременно, и внутренней, если одно касание внутреннее, а другое внешнее);  t$\scriptstyle \beta$$\scriptstyle \gamma$, t$\scriptstyle \gamma$$\scriptstyle \delta$ и т. д. определяются аналогично. Докажите, что  t$\scriptstyle \alpha$$\scriptstyle \beta$t$\scriptstyle \gamma$$\scriptstyle \delta$ + t$\scriptstyle \beta$$\scriptstyle \gamma$t$\scriptstyle \delta$$\scriptstyle \alpha$ = t$\scriptstyle \alpha$$\scriptstyle \gamma$t$\scriptstyle \beta$$\scriptstyle \delta$ (обобщенная теорема Птолемея).

ВверхВниз   Решение


На стороны BC и CD параллелограмма ABCD (или на их продолжения) опущены перпендикуляры AM и AN.
Докажите, что треугольники MAN и ABC подобны.

ВверхВниз   Решение


Доказать, что из одиннадцати произвольных бесконечных десятичных дробей можно выбрать две дроби, разность которых имеет в десятичной записи либо бесконечное число нулей, либо бесконечное число девяток.

ВверхВниз   Решение


В трапецию ABCD  (BC || AD)  вписана окружность, касающаяся боковых сторон AB и CD в точках K и L соответственно, а оснований AD и BC в точках M и N.
  а) Пусть Q – точка пересечения отрезков BM и AN. Докажите, что  KQ || AD.
  б) Докажите, что  AK·KB = CL·LD.

ВверхВниз   Решение


Петин кот перед дождем всегда чихает. Сегодня он чихнул. ``Значит, будет дождь'' - думает Петя. Прав ли он?

ВверхВниз   Решение


На отрезке MN построены подобные, одинаково ориентированные треугольники AMN, NBM и MNC (см. рис.).
Докажите, что треугольник ABC подобен всем этим треугольникам, а центр его описанной окружности равноудален от точек M и N.

ВверхВниз   Решение


Углы треугольника ABC связаны соотношением  3α + 2β = 180°. Докажите, что  a² + bc = c².

ВверхВниз   Решение


Сколькими способами можно представить 1000000 в виде произведения трёх множителей, если произведения, отличающиеся порядком множителей,
  а) считаются различными?
  б) считаются тождественными?

ВверхВниз   Решение


Сколько ожерелий можно составить из пяти одинаковых красных бусинок и двух одинаковых синих бусинок?

ВверхВниз   Решение


Сколькими способами из полной колоды (52 карты) можно выбрать
  а) 4 карты разных мастей и достоинств?
  б) 6 карт так, чтобы среди них были представители всех четырех мастей?

ВверхВниз   Решение


Из любых шести точек на плоскости (из которых никакие три не лежат на одной прямой) можно так выбрать три, что треугольник с вершинами в этих точках имеет хотя бы один угол, не больший 30o. Доказать.

ВверхВниз   Решение


а) Спортивный клуб насчитывает 30 членов, из которых надо выделить четыре человека для участия в забеге на 1000 метров. Сколькими способами это можно сделать?
б) Сколькими способами можно составить команду из четырёх человек для участия в эстафете  100 м + 200 м + 300 м + 400 м?

ВверхВниз   Решение


Сколькими способами можно расположить в девяти лузах семь белых и два чёрных шара? Часть луз может быть пустой, а лузы считаются различными.

ВверхВниз   Решение


Сколькими способами можно построить замкнутую ломаную, вершинами которой являются вершины правильного шестиугольника (ломаная может быть самопересекающейся)?

ВверхВниз   Решение


Сколько различных четырёхзначных чисел, делящихся на 4, можно составить из цифр 1, 2, 3 и 4,
  а) если каждая цифра может встречаться только один раз?
  б) если каждая цифра может встречаться несколько раз?

ВверхВниз   Решение


В равностороннем (неправильном) пятиугольнике ABCDE угол ABC вдвое больше угла DBE. Найдите величину угла ABC.

Вверх   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 110]      



Задача 57055  (#06.043)

 [Обобщенная теорема Птолемея]
Тема:   [ Теорема Птолемея ]
Сложность: 6
Классы: 9,10

Окружности  $ \alpha$,$ \beta$,$ \gamma$ и $ \delta$ касаются данной окружности в вершинах A, B, C и D выпуклого четырехугольника ABCD. Пусть  t$\scriptstyle \alpha$$\scriptstyle \beta$ — длина общей касательной к окружностям $ \alpha$ и $ \beta$ (внешней, если оба касания внутренние или внешние одновременно, и внутренней, если одно касание внутреннее, а другое внешнее);  t$\scriptstyle \beta$$\scriptstyle \gamma$, t$\scriptstyle \gamma$$\scriptstyle \delta$ и т. д. определяются аналогично. Докажите, что  t$\scriptstyle \alpha$$\scriptstyle \beta$t$\scriptstyle \gamma$$\scriptstyle \delta$ + t$\scriptstyle \beta$$\scriptstyle \gamma$t$\scriptstyle \delta$$\scriptstyle \alpha$ = t$\scriptstyle \alpha$$\scriptstyle \gamma$t$\scriptstyle \beta$$\scriptstyle \delta$ (обобщенная теорема Птолемея).
Прислать комментарий     Решение


Задача 57056  (#06.044)

Темы:   [ Пятиугольники ]
[ Признаки и свойства параллелограмма ]
[ Правильный (равносторонний) треугольник ]
Сложность: 5
Классы: 8,9,10

В равностороннем (неправильном) пятиугольнике ABCDE угол ABC вдвое больше угла DBE. Найдите величину угла ABC.
Прислать комментарий     Решение


Задача 57057  (#06.045)

Тема:   [ Пятиугольники ]
Сложность: 5
Классы: 9

а) Диагонали AC и BE правильного пятиугольника ABCDE пересекаются в точке K. Докажите, что описанная окружность треугольника CKE касается прямой BC.
б) Пусть a — длина стороны правильного пятиугольника, d — длина его диагонали. Докажите, что  d2 = a2 + ad.
Прислать комментарий     Решение


Задача 57058  (#06.046)

Темы:   [ Пятиугольники ]
[ Правильные многоугольники ]
[ Соображения непрерывности ]
Сложность: 4
Классы: 9

Докажите, что в правильный пятиугольник можно так вписать квадрат, что его вершины будут лежать на четырёх сторонах пятиугольника.

Прислать комментарий     Решение

Задача 57059  (#06.047)

Темы:   [ Пятиугольники ]
[ Центральная симметрия помогает решить задачу ]
[ Диаметр, основные свойства ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 5
Классы: 8,9,10

Правильный пятиугольник ABCDE со стороной a вписан в окружность S. Прямые, проходящие через его вершины перпендикулярно сторонам, образуют правильный пятиугольник со стороной b (см. рис.). Сторона правильного пятиугольника, описанного около окружности S, равна c. Докажите, что  a2 + b2 = c2.


Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .