ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Концы отрезков AB и CD перемещаются по сторонам данного угла, причем прямые AB и CD перемещаются параллельно; M – точка пересечения отрезков AB и CD. Докажите, что величина
Известно, что число a положительно, а неравенство 10 < ax < 100 имеет ровно пять решений в натуральных числах. Коля и Женя договорились встретиться в метро в первом часу дня. Коля приходит на место встречи между полуднем и часом дня, ждёт 10 минут и уходит. Женя поступает точно так же. В центре квадратного пирога находится изюминка. От пирога можно отрезать треугольный кусок по линии, пересекающей в точках, отличных от вершин, две соседние стороны; от оставшейся части пирога — следующий кусок (таким же образом) и т.д. Можно ли отрезать изюминку? Напишите вместо пропуска число (буквами, а не цифрами!), чтобы получилось истинное предложение:
В ЭТОМ ПРЕДЛОЖЕНИИ ... БУКВ
(к последнему слову, возможно, придётся добавить окончание, чтобы фраза
правильно звучала по-русски).
Узлы бесконечной клетчатой бумаги раскрашены
в два цвета. Докажите, что существуют две горизонтальные
и две вертикальные прямые, на пересечении которых лежат
точки одного цвета.
Докажите, что если x + y + z = 6, то x² + y² + z² ≥ 12. В круге проведены два перпендикулярных диаметра,
т. е. четыре радиуса, а затем построены четыре круга, диаметрами которых
служат эти радиусы. Докажите, что суммарная площадь попарно общих
частей этих кругов равна площади
части исходного круга, лежащей вне рассматриваемых четырех
кругов (рис.).
Докажите, что если a ≡ b (mod m) и
c ≡ d (mod m), то Внутри равностороннего треугольника со стороной 1
расположено пять точек. Докажите, что расстояние между
некоторыми двумя из них меньше 0, 5.
Внутри острого угла BAC дана точка M. Постройте на сторонах BA
и AC точки X и Y так, чтобы периметр треугольника XYM был
минимальным.
|
Страница: 1 2 >> [Всего задач: 6]
На одной стороне острого угла даны точки A и B. Постройте на
другой его стороне точку C, из которой отрезок AB виден под
наибольшим углом.
Проведите через данную точку P, лежащую внутри угла AOB,
прямую MN так, чтобы величина OM + ON была минимальной (точки M
и N лежат на сторонах OA и OB).
Даны угол XAY и окружность внутри его. Постройте точку окружности,
сумма расстояний от которой до прямых AX и AY минимальна.
Дан угол XAY и точка O внутри его. Проведите через точку O
прямую, отсекающую от данного угла треугольник наименьшей площади.
Внутри острого угла BAC дана точка M. Постройте на сторонах BA
и AC точки X и Y так, чтобы периметр треугольника XYM был
минимальным.
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке