ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Ученик не заметил знак умножения между двумя трёхзначными числами и написал одно шестизначное число, которое оказалось в семь раз больше их произведения. Найдите эти числа. Пусть a1, ..., a11 –
различные натуральные числа, не меньшие 2, сумма которых равна 407. а) Есть кусок сыра. Разрешается выбрать любое положительное (возможно, нецелое) число a ≠ 1, и разрезать этот кусок в отношении 1 : a по весу, затем разрезать в том же отношении любой из имеющихся кусков, и т. д. Можно ли действовать так, что после конечного числа разрезаний весь сыр удастся разложить на две кучки равного веса? Найдите все такие числа a, что для любого натурального n число an(n + 2)(n + 3)(n + 4) будет целым. Даны многочлен P(x) и такие числа a1, a2, a3, b1, b2, b3, что a1a2a3 ≠ 0. Оказалось, что P(a1x + b1) + P(a2x + b2) = P(a3x + b3) для любого действительного x. Докажите, что P(x) имеет хотя бы один действительный корень. Докажите, что для любого натурального n выполнено неравенство (n – 1)n+1(n + 1)n–1 < n2n. По кругу стоит 101 мудрец. Каждый из них либо считает, что Земля вращается вокруг Юпитера, либо считает, что Юпитер вращается вокруг Земли. Один раз в минуту все мудрецы одновременно оглашают свои мнения. Сразу после этого каждый мудрец, оба соседа которого думают иначе, чем он, меняет своё мнение, а остальные – не меняют. Докажите, что через некоторое время мнения перестанут меняться. Дан выпуклый пятиугольник. Петя выписал в тетрадь значения синусов всех его углов, а Вася – значения косинусов всех его углов. Оказалось, что среди выписанных Петей чисел нет четырёх различных. Могут ли все числа, выписанные Васей, оказаться различными? Среди всех многоугольников, вписанных в данную окружность, найдите тот,
у которого максимальна сумма квадратов длин сторон.
Дан выпуклый многоугольник
A1...An. Докажите, что точка
многоугольника, для которой максимальна сумма расстояний от нее до
всех вершин, является вершиной.
|
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]
Среди всех многоугольников, вписанных в данную окружность, найдите тот,
у которого максимальна сумма квадратов длин сторон.
Дан выпуклый многоугольник
A1...An. Докажите, что точка
многоугольника, для которой максимальна сумма расстояний от нее до
всех вершин, является вершиной.
Внутри окружности с центром O дана точка A. Найдите точку M
окружности, для которой угол OMA максимален.
На плоскости даны прямая l и точки A и B, лежащие по разные
стороны от нее. Постройте окружность, проходящую через точки A
и B так, чтобы прямая l высекала на ней хорду наименьшей длины.
Даны прямая l и точки P и Q, лежащие по одну сторону от нее.
На прямой l берем точку M и в треугольнике PQM проводим высоты
PP' и QQ'. При каком положении точки M длина отрезка P'Q'
минимальна?
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке