ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Даны четыре окружности, причем окружности S1 и S3 пересекаются с обеими окружностями S2 и S4. Докажите, что если точки пересечения S1 с S2 и S3 с S4 лежат на одной окружности или прямой, то и точки пересечения S1 с S4 и S2 с S3 лежат на одной окружности или прямой (рис.).


Вниз   Решение


В пачке бумаги формата А4 250 листов. За неделю в офисе расходуется 800 листов. Какое наименьшее количество пачек бумаги нужно купить в офис на 7 недель?

ВверхВниз   Решение


Докажите, что квадрат можно разрезать на n квадратов для любого n, начиная с шести.

ВверхВниз   Решение


Докажите, что сумма высот треугольника меньше его периметра.

ВверхВниз   Решение


Доказать, что любое чётное число 2n$ \ge$ 0 может быть единственным образом представлено в виде 2n = (x + y)2 + 3x + y, где x и y — целые неотрицательные числа.

ВверхВниз   Решение


Найдите сумму   1·1! + 2·2! + 3·3! + … + n·n!.

ВверхВниз   Решение


Точки A, B и O не лежат на одной прямой. Проведите через точку O прямую l так, чтобы сумма расстояний от нее до точек A и B была: а) наибольшей; б) наименьшей.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 57558

Тема:   [ Экстремальные свойства (прочее) ]
Сложность: 3
Классы: 9

Внутри окружности с центром O дана точка A. Найдите точку M окружности, для которой угол OMA максимален.
Прислать комментарий     Решение


Задача 57562

Тема:   [ Экстремальные свойства (прочее) ]
Сложность: 3
Классы: 9

Если на плоскости заданы пять точек, то, рассматривая всевозможные тройки этих точек, можно образовать 30 углов. Обозначим наименьший из этих углов $ \alpha$. Найдите наибольшее значение $ \alpha$.
Прислать комментарий     Решение


Задача 57559

Тема:   [ Экстремальные свойства (прочее) ]
Сложность: 4
Классы: 9

На плоскости даны прямая l и точки A и B, лежащие по разные стороны от нее. Постройте окружность, проходящую через точки A и B так, чтобы прямая l высекала на ней хорду наименьшей длины.
Прислать комментарий     Решение


Задача 57560

Тема:   [ Экстремальные свойства (прочее) ]
Сложность: 4
Классы: 9

Даны прямая l и точки P и Q, лежащие по одну сторону от нее. На прямой l берем точку M и в треугольнике PQM проводим высоты PP' и QQ'. При каком положении точки M длина отрезка P'Q' минимальна?
Прислать комментарий     Решение


Задача 57561

Тема:   [ Экстремальные свойства (прочее) ]
Сложность: 4
Классы: 9

Точки A, B и O не лежат на одной прямой. Проведите через точку O прямую l так, чтобы сумма расстояний от нее до точек A и B была: а) наибольшей; б) наименьшей.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .