ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Варианты:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Окружности радиуса x и y касаются окружности
радиуса R, причем расстояние между точками касания равно a.
Вычислите длину следующей общей касательной к первым двум окружностям:
Восстановите треугольник ABC по прямым lb и lc, содержащим биссектрисы углов B и C, и основанию биссектрисы угла A – точке L1. Дан параллелограмм ABCD. Окружность, проходящая
через точку A, пересекает отрезки AB, AC и AD в точках P, Q и R
соответственно. Докажите, что
AP . AB = AR . AD = AQ . AC.
Диагонали AC, BD трапеции ABCD пересекаются в точке P. Описанные окружности треугольников ABP, CDP пересекают прямую AD в точках X, Y. Точка M – середина XY. Докажите, что BM = CM. Доказать, что в круг радиуса 1 нельзя поместить без наложений два треугольника, площадь каждого из которых больше 1. Существует ли треугольник, для сторон x, y, z которого выполнено соотношение x³ + y³ + z³ = (x + y)(y + z)(z + x)? Докажите, что любое аффинное преобразование
можно представить в виде композиции двух растяжений
и аффинного преобразования, переводящего любой треугольник
в подобный ему треугольник.
Натуральное число A при делении на 1981 дало в остатке 35, при делении на 1982 оно дало в остатке также 35. Каков остаток от деления числа A на 14? Каждая из двух равных окружностей ω1 и ω2 проходит через центр другой. Треугольник ABC вписан в ω1, а прямые AC, BC касаются ω2. Вписанная окружность треугольника ABC касается стороны AB в точке C'. Вписанная окружность треугольника ACC' касается сторон AB и AC в точках C1, B1; Вписанная окружность треугольника BCC', касается сторон AB и BC в точках C2, A2. Докажите, что прямые B1C1, A2C2 и CC' пересекаются в одной точке. Волк, Ёж, Чиж и Бобёр делили апельсин. Ежу досталось вдвое больше долек, чем Чижу, Чижу – впятеро меньше, чем Бобру, а Бобру – на 8 долек больше, чем Чижу. Найдите, сколько долек было в апельсине, если Волку досталась только кожура. Решите задачу 5.85, а) с помощью теоремы Менелая.
a, b, c – такие три числа, что a + b + c = 0. Доказать, что в этом случае справедливо соотношение ab + ac + bc ≤ 0. Что больше Какое число больше: 100100 или 5050·15050? На сторонах BC, CA и AB треугольника ABC (или на их продолжениях) взяты точки A1, B1 и C1, лежащие на одной прямой. Докажите, что В произведении трёх натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно на 2016? Через точку P, лежащую вне окружности, проводятся всевозможные прямые, пересекающие эту окружность. Найти множество середин хорд, отсекаемых окружностью на этих прямых. а) В треугольнике ABC проведены биссектрисы внешних углов AA1, BB1 и
CC1 (точки A1, B1 и C1 лежат на прямых BC, CA и AB).
Докажите, что точки A1, B1 и C1 лежат на одной прямой.
Дан треугольник ABC. Точка M, расположенная
внутри треугольника, движется параллельно стороне BC до
пересечения со стороной CA, затем параллельно AB до
пересечения с BC, затем параллельно AC до пересечения
с AB и т. д. Докажите, что через некоторое число шагов
траектория движения точки замкнется.
|
Страница: 1 2 3 4 5 >> [Всего задач: 21]
Дан четырёхугольник; A, B, C, D — последовательные середины его сторон, P, Q — середины диагоналей. Доказать, что треугольник BCP равен треугольнику ADQ.
Через точку P, лежащую вне окружности, проводятся всевозможные прямые, пересекающие эту окружность. Найти множество середин хорд, отсекаемых окружностью на этих прямых.
Дан треугольник ABC. Точка M, расположенная
внутри треугольника, движется параллельно стороне BC до
пересечения со стороной CA, затем параллельно AB до
пересечения с BC, затем параллельно AC до пересечения
с AB и т. д. Докажите, что через некоторое число шагов
траектория движения точки замкнется.
Построить треугольник по высоте и медиане, выходящим из одной вершины, и радиусу описанного круга.
Дописать к 523... три цифры так, чтобы полученное шестизначное число делилось на 7, 8 и 9.
Страница: 1 2 3 4 5 >> [Всего задач: 21]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке