ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Постройте треугольник по данным серединам двух
сторон и прямой, на которой лежит биссектриса, проведенная
к одной из этих сторон.
Докажите, что
Докажите, что
S = rc2tg( Даны три прямые l1, l2 и l3, пересекающиеся
в одной точке, и точка A на прямой l1. Постройте треугольник
ABC так, чтобы точка A была его вершиной, а биссектрисы
треугольника лежали на прямых l1, l2 и l3.
Из 16 плиток размером 1×3 и одной плитки 1×1
сложили квадрат со стороной 7. Докажите, что плитка 1×1
лежит в центре квадрата или примыкает к его границе.
С помощью одного циркуля Пользуясь только циркулем, разделите пополам данный отрезок, то есть постройте для данных точек A и B такую точку C, что точки A, B, C лежат на одной прямой и AC = BC. Докажите, что существует проективное преобразование, которое данную
окружность переводит в окружность, а данную хорду — в ее диаметр.
Даны треугольник ABC и прямая l. Обозначим
через A1, B1, C1 середины отрезков, высекаемых на прямой l
углами A, B, C, а через A2, B2, C2 —
точки пересечения прямых AA1 и BC, BB1 и AC, CC1
и AB. Докажите, что точки A2, B2, C2 лежат на одной прямой.
Дан квадратный лист клетчатой бумаги размером
100×100 клеток. Проведено несколько несамопересекающихся
ломаных, идущих по сторонам клеток и не имеющих общих
точек. Эти ломаные идут строго внутри квадрата, а концами
обязательно выходят на границу. Докажите, что кроме
вершин квадрата найдется еще узел (внутри квадрата или
на границе), не принадлежащий ни одной ломаной.
Докажите, что
На сторонах треугольника ABC внешним образом построены
правильные треугольники A1BC, AB1C и ABC1. Докажите,
что
AA1 = BB1 = CC1.
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 53]
На плоскости даны три (одинаково ориентированных) квадрата:
ABCD,
AB1C1D1 и
A2B2CD2; первый квадрат
имеет с двумя другими общие вершины A и C. Докажите,
что медиана BM треугольника BB1B2 перпендикулярна отрезку D1D2.
Дан треугольник ABC. На его сторонах AB и BC
построены внешним образом квадраты ABMN и BCPQ.
Докажите, что центры этих квадратов и середины отрезков
MQ и AC образуют квадрат.
Вокруг квадрата описан параллелограмм. Докажите,
что перпендикуляры, опущенные из вершин параллелограмма
на стороны квадрата, образуют квадрат.
На сторонах треугольника ABC внешним образом построены
правильные треугольники A1BC, AB1C и ABC1. Докажите,
что
AA1 = BB1 = CC1.
На отрезке AE по одну сторону от него построены равносторонние
треугольники ABC и CDE; M и P — середины отрезков
AD и BE. Докажите, что треугольник CPM равносторонний.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 53]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке