Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Постройте треугольник по данным серединам двух сторон и прямой, на которой лежит биссектриса, проведенная к одной из этих сторон.

Вниз   Решение


Докажите, что
а)  5R - r $ \geq$ $ \sqrt{3}$p;
б)  4R - ra $ \geq$ (p - a)[$ \sqrt{3}$ + (a2 + (b - c)2)/(2S)].

ВверхВниз   Решение


Докажите, что  S = rc2tg($ \alpha$/2)tg($ \beta$/2)ctg($ \gamma$/2).

ВверхВниз   Решение


Даны три прямые l1, l2 и l3, пересекающиеся в одной точке, и точка A на прямой l1. Постройте треугольник ABC так, чтобы точка A была его вершиной, а биссектрисы треугольника лежали на прямых l1, l2 и l3.

ВверхВниз   Решение


Из 16 плиток размером 1×3 и одной плитки 1×1 сложили квадрат со стороной 7. Докажите, что плитка 1×1 лежит в центре квадрата или примыкает к его границе.

ВверхВниз   Решение


С помощью одного циркуля
  а) постройте точки пересечения данной окружности S и прямой, проходящей через данные точки A и B;
  б) постройте точку пересечения прямых A1B1 и A2B2, где A1, B1, A2 и B2 – данные точки.

ВверхВниз   Решение


Пользуясь только циркулем, разделите пополам данный отрезок, то есть постройте для данных точек A и B такую точку C, что точки A, B, C лежат на одной прямой и  AC = BC.

ВверхВниз   Решение


Докажите, что существует проективное преобразование, которое данную окружность переводит в окружность, а данную хорду — в ее диаметр.

ВверхВниз   Решение


Даны треугольник ABC и прямая l. Обозначим через A1, B1, C1 середины отрезков, высекаемых на прямой l углами A, B, C, а через A2, B2, C2 — точки пересечения прямых AA1 и BC, BB1 и AC, CC1 и AB. Докажите, что точки A2, B2, C2 лежат на одной прямой.

ВверхВниз   Решение


Дан квадратный лист клетчатой бумаги размером 100×100 клеток. Проведено несколько несамопересекающихся ломаных, идущих по сторонам клеток и не имеющих общих точек. Эти ломаные идут строго внутри квадрата, а концами обязательно выходят на границу. Докажите, что кроме вершин квадрата найдется еще узел (внутри квадрата или на границе), не принадлежащий ни одной ломаной.

ВверхВниз   Решение


Докажите, что $ {\frac{1}{h_a}}$ + $ {\frac{1}{h_b}}$ + $ {\frac{1}{h_c}}$ = $ {\frac{1}{r_a}}$ + $ {\frac{1}{r_b}}$ + $ {\frac{1}{r_c}}$ = $ {\frac{1}{r}}$.

ВверхВниз   Решение


На сторонах треугольника ABC внешним образом построены правильные треугольники A1BC, AB1C и ABC1. Докажите, что AA1 = BB1 = CC1.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 53]      



Задача 57924  (#18.006)

Темы:   [ Поворот на 90 ]
[ Поворот помогает решить задачу ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4
Классы: 8,9

На плоскости даны три (одинаково ориентированных) квадрата: ABCD, AB1C1D1 и  A2B2CD2; первый квадрат имеет с двумя другими общие вершины A и C. Докажите, что медиана BM треугольника BB1B2 перпендикулярна отрезку D1D2.
Прислать комментарий     Решение


Задача 57925  (#18.007)

Темы:   [ Поворот на 90 ]
[ Поворот помогает решить задачу ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4+
Классы: 8,9

Дан треугольник ABC. На его сторонах AB и BC построены внешним образом квадраты ABMN и BCPQ. Докажите, что центры этих квадратов и середины отрезков MQ и AC образуют квадрат.
Прислать комментарий     Решение


Задача 57926  (#18.008)

Темы:   [ Поворот на 90 ]
[ Поворот помогает решить задачу ]
[ Конкуррентность высот. Углы между высотами. ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 5
Классы: 8,9,10

Вокруг квадрата описан параллелограмм. Докажите, что перпендикуляры, опущенные из вершин параллелограмма на стороны квадрата, образуют квадрат.
Прислать комментарий     Решение


Задача 57927  (#18.009.1)

Тема:   [ Повороты на 60 и 120 ]
Сложность: 3
Классы: 9

На сторонах треугольника ABC внешним образом построены правильные треугольники A1BC, AB1C и ABC1. Докажите, что AA1 = BB1 = CC1.
Прислать комментарий     Решение


Задача 57928  (#18.009)

Тема:   [ Повороты на 60 и 120 ]
Сложность: 3
Классы: 9

На отрезке AE по одну сторону от него построены равносторонние треугольники ABC и CDE; M и P — середины отрезков AD и BE. Докажите, что треугольник CPM равносторонний.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 53]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .