ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Используя результат задачи 61403, докажите неравенства:
в) В окружности, радиус которой 1,4, определите расстояние от центра до хорды, если она отсекает дугу в 120°. Докажите, что
r/R
Постройте треугольник по высоте, основанию и медиане, проведённой к этому основанию.
Прямая, проходящая через общую точку A двух окружностей, пересекает вторично эти окружности в точках B и C соответственно. Расстояние между проекциями центров окружностей на эту прямую равно 12. Найдите BC, если известно, что точка A лежит на отрезке BC. Докажите, что проекции основания высоты треугольника на стороны,
ее заключающие, и на две другие высоты лежат на одной прямой.
Многочлен P(x) с целыми коэффициентами при некоторых целых x принимает значения 1, 2 и 3. По стороне правильного треугольника катится окружность
радиуса, равного его высоте. Докажите, что угловая
величина дуги, высекаемой на окружности сторонами треугольника,
всегда равна
60o.
Докажите, что если a, b, c — длины сторон
треугольника периметра 2, то
a2 + b2 + c2 < 2(1 - abc).
Отличник Поликарп заполнил клетки таблицы цифрами так, что сумма цифр, стоящих в каждых трёх соседних клетках, равнялась 15, а двоечник Колька стёр почти все цифры. Сможете ли вы восстановить таблицу? Медианы AA1, BB1 и CC1 треугольника ABC
пересекаются в точке M; P — произвольная точка. Прямая la
проходит через точку A параллельно прямой PA1; прямые lb
и lc определяются аналогично. Докажите, что:
|
Страница: 1 2 >> [Всего задач: 9]
В трапеции точка пересечения диагоналей равноудалена от прямых, на
которых лежат боковые стороны. Докажите, что трапеция равнобедренная.
Медианы AA1, BB1 и CC1 треугольника ABC
пересекаются в точке M; P — произвольная точка. Прямая la
проходит через точку A параллельно прямой PA1; прямые lb
и lc определяются аналогично. Докажите, что:
Четырёхугольник разрезан диагоналями на четыре треугольника. Докажите, что точки пересечения медиан этих треугольников образуют параллелограмм.
Докажите, что точка пересечения продолжений боковых сторон трапеции, середины оснований и точка пересечения диагоналей лежат на одной прямой.
Окружность S касается равных сторон AB и BC
равнобедренного треугольника ABC в точках P и K, а также
касается внутренним образом описанной окружности треугольника ABC.
Докажите, что середина отрезка PK является
центром вписанной окружности треугольника ABC.
Страница: 1 2 >> [Всего задач: 9]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке