Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Используя результат задачи 61403, докажите неравенства:
  а)     неравенство Коши);
  б)  

  в)     где  b1 + ... + bn = 1.
  Значения переменных считаются положительными.

Вниз   Решение


В окружности, радиус которой 1,4, определите расстояние от центра до хорды, если она отсекает дугу в 120°.

ВверхВниз   Решение


Докажите, что  r/R $ \leq$ 2 sin($ \alpha$/2)(1 - sin($ \alpha$/2)).

ВверхВниз   Решение


Постройте треугольник по высоте, основанию и медиане, проведённой к этому основанию.

ВверхВниз   Решение


Прямая, проходящая через общую точку A двух окружностей, пересекает вторично эти окружности в точках B и C соответственно. Расстояние между проекциями центров окружностей на эту прямую равно 12. Найдите BC, если известно, что точка A лежит на отрезке BC.

ВверхВниз   Решение


Докажите, что проекции основания высоты треугольника на стороны, ее заключающие, и на две другие высоты лежат на одной прямой.

ВверхВниз   Решение


Многочлен P(x) с целыми коэффициентами при некоторых целых x принимает значения 1, 2 и 3.
Доказать, что существует не более одного целого x, при котором значение этого многочлена равно 5.

ВверхВниз   Решение


По стороне правильного треугольника катится окружность радиуса, равного его высоте. Докажите, что угловая величина дуги, высекаемой на окружности сторонами треугольника, всегда равна  60o.

ВверхВниз   Решение


Докажите, что если a, b, c — длины сторон треугольника периметра 2, то  a2 + b2 + c2 < 2(1 - abc).

ВверхВниз   Решение


Отличник Поликарп заполнил клетки таблицы цифрами так, что сумма цифр, стоящих в каждых трёх соседних клетках, равнялась 15, а двоечник Колька стёр почти все цифры. Сможете ли вы восстановить таблицу?

ВверхВниз   Решение


Медианы AA1, BB1 и CC1 треугольника ABC пересекаются в точке M; P — произвольная точка. Прямая la проходит через точку A параллельно прямой PA1; прямые lb и lc определяются аналогично. Докажите, что:
а) прямые la, lb и lc пересекаются в одной точке Q;
б) точка M лежит на отрезке PQ, причем PM : MQ = 1 : 2.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 9]      



Задача 57981

Тема:   [ Гомотетичные многоугольники ]
Сложность: 3
Классы: 9

В трапеции точка пересечения диагоналей равноудалена от прямых, на которых лежат боковые стороны. Докажите, что трапеция равнобедренная.
Прислать комментарий     Решение


Задача 57982

Тема:   [ Гомотетичные многоугольники ]
Сложность: 3
Классы: 9

Медианы AA1, BB1 и CC1 треугольника ABC пересекаются в точке M; P — произвольная точка. Прямая la проходит через точку A параллельно прямой PA1; прямые lb и lc определяются аналогично. Докажите, что:
а) прямые la, lb и lc пересекаются в одной точке Q;
б) точка M лежит на отрезке PQ, причем PM : MQ = 1 : 2.
Прислать комментарий     Решение


Задача 55764

Темы:   [ Гомотетия помогает решить задачу ]
[ Параллелограмм Вариньона ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Гомотетичные многоугольники ]
Сложность: 3+
Классы: 8,9

Четырёхугольник разрезан диагоналями на четыре треугольника. Докажите, что точки пересечения медиан этих треугольников образуют параллелограмм.

Прислать комментарий     Решение

Задача 53749

 [Замечательное свойство трапеции]
Темы:   [ Замечательное свойство трапеции ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 8,9

Докажите, что точка пересечения продолжений боковых сторон трапеции, середины оснований и точка пересечения диагоналей лежат на одной прямой.

Прислать комментарий     Решение

Задача 57983

Тема:   [ Гомотетичные многоугольники ]
Сложность: 4
Классы: 9

Окружность S касается равных сторон AB и BC равнобедренного треугольника ABC в точках P и K, а также касается внутренним образом описанной окружности треугольника ABC. Докажите, что середина отрезка PK является центром вписанной окружности треугольника ABC.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .