ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В королевстве восемь городов. Король хочет построить такую систему дорог, чтобы из каждого города можно было попасть в любой другой, минуя не более одного промежуточного города, и чтобы из каждого города выходило не более k дорог. При каких k это возможно? Докажите равенство Окружности S1 и S2 касаются внешним образом в точке F . Их общая касательная l касается S1 и S2 в точках A и B соответственно. Прямая, параллельная AB , касается окружности S2 в точке C и пересекает S1 в точках D и E . Докажите, что общая хорда окружностей, описанных около треугольников ABC и BDE , проходит через точку F . Можно ли таблицу 5×5 заполнить числами так, чтобы сумма чисел в каждой строке была положительной, а сумма чисел в каждом столбце – отрицательной? Точка D – середина бокового ребра CC1 треугольной призмы ABCA1B1C1 . Прямые AB1 , BC и DA1 попарно перпендикулярны. Найдите высоту призмы, если AB = BC= AB1 =a . Докажите, что n³ – n делится на 24 при любом нечётном n.
Сфера, касающаяся верхнего основания цилиндра, имеет единственную общую
точку с окружностью его нижнего основания и делит ось цилиндра в отношении
2:6:1, считая от центра одного из оснований. Найдите объём цилиндра, если
известно, что сфера касается двух его образующих, находящихся на
расстоянии Простые числа имеют только два различных делителя – единицу и само это число. А какие числа имеют только три различных делителя? Последовательность многочленов P0(x) = 1, P1(x) = x, P2(x) = x² – 1, ... задается условием
Pn+1(x) = xPn(x) – Pn–1(x). В пространстве проведены две параллельные прямые и пересекающие эти прямые две параллельные плоскости. Докажите, что четыре точки пересечения прямых и плоскостей служат вершинами параллелограмма. На стороне CD параллелограмма ABCD с тупым углом при вершине D построен равносторонний треугольник CDE так, что точки A и E лежат по разные стороны прямой CD . Известно, что расстояния от точек D и E до прямой BC равны соответственно 3 и 8, а расстояние от точки E до прямой AB равно 13. Найдите площадь параллелограмма ABCD . Вершины треугольника соответствуют комплексным числам a, b и c, лежащим
на единичной окружности с центром в нуле. Докажите, что если точки z и w
изогонально сопряжены, то
z + w + abc |
Страница: << 1 2 3 4 5 >> [Всего задач: 22]
Дан не равносторонний треугольник ABC. Точки A1, B1 и C1 выбраны
так, что треугольники BA1C, CB1A и AC1B собственно подобны. Докажите,
что треугольник A1B1C1 равносторонний тогда и только тогда, когда
указанные подобные треугольники являются равнобедренными треугольниками с углом
120o при вершинах A1, B1 и C1.
На сторонах аффинно правильного многоугольника
A1A2...An с центром O
внешним образом построены квадраты
Aj + 1AjBjCj + 1
(j = 1,..., n).
Докажите, что отрезки BjCj и OAj перпендикулярны, а их отношение равно
2
а) Докажите, что если A, B, C и D — произвольные точки плоскости, то
AB . CD + BC . AD в) Докажите, что (нестрогое) неравенство Птолемея обращается в равенство тогда и только тогда, когда ABCD — (выпуклый) вписанный четырехугольник. г) Докажите, что неравенство из задачи б) обращается в равенство тогда и только тогда, когда A1...A6 — вписанный шестиугольник.
На сторонах выпуклого n-угольника внешним образом построены правильные
n-угольники. Докажите, что их центры образуют правильный n-угольник тогда и
только тогда, когда исходный n-угольник аффинно правильный.
Вершины треугольника соответствуют комплексным числам a, b и c, лежащим
на единичной окружности с центром в нуле. Докажите, что если точки z и w
изогонально сопряжены, то
z + w + abc
Страница: << 1 2 3 4 5 >> [Всего задач: 22]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке