ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Разность двух целых чисел умножили на их произведение. Могло ли получиться число 1999? Докажите, что В параллелограмме ABCD диагональ AC больше
диагонали BD; M — такая точка диагонали AC, что
четырехугольник BCDM вписанный. Докажите, что прямая BD
является общей касательной к описанным окружностям
треугольников ABM и ADM.
На прямой l даны точки A, B, C и D. Через точки A и
B, а также через точки C и D проводятся параллельные прямые.
На сторонах BC и CD параллелограмма ABCD
построены внешним образом правильные треугольники BCP
и CDQ. Докажите, что треугольник APQ правильный.
Дана таблица 3×3 (как для игры в крестики-нолики). В четыре случайно выбранные ячейки случайным образом поставили четыре фишки. а) У Полины есть волшебная шоколадка в форме клетчатой лесенки со стороной 10 (см. рисунок), в каждой дольке своя начинка. Каждую минуту Полина отламывает верхний ряд долек шоколадки, поворачивает его на 90 градусов против часовой стрелки и приставляет её к оставшейся части в виде столбца слева, как показано на рисунке (после этого столбец слипается с другой частью, и снова получается цельная лесенка). Как только каждая долька вернётся на то же место, в котором она была изначально, Полина съест всю шоколадку. Через сколько минут это произойдёт? Как только каждая долька вернётся на то же место, в котором она была изначально, Саша съест шоколадку. Через сколько минут это произойдёт?
б) У Саши есть такая же волшебная шоколадка. Он каждую минуту отламывает верхний ряд долек шоколадки, поворачивает его на 90 градусов по часовой стрелке и приставляет её к оставшейся части в виде столбца слева, как показано на рисунке. На сторонах треугольника ABC внешним образом построены
правильные треугольники A1BC, AB1C и ABC1. Докажите,
что
AA1 = BB1 = CC1.
Сколько осей симметрии может иметь семиугольник? Постройте ромб, две стороны которого лежат на
двух данных параллельных прямых, а две другие проходят через две данные
точки.
Стороны треугольника T параллельны медианам треугольника T1.
Докажите, что медианы треугольника T параллельны сторонам
треугольника T1.
а) Вписанная окружность треугольника ABC касается стороны AC
в точке D, DM — ее диаметр. Прямая BM
пересекает сторону AC в точке K. Докажите, что AK = DC.
Доска размером 2005×2005 разделена на квадратные клетки со стороной единица. Некоторые клетки доски в каком-то порядке занумерованы числами 1, 2, ... так, что на расстоянии, меньшем 10, от любой незанумерованной клетки найдется занумерованная клетка. Докажите, что найдутся две клетки на расстоянии, меньшем 150, которые занумерованы числами, различающимися более, чем на 23. (Расстояние между клетками – это расстояние между их центрами.) Докажите, что с помощью поворота
x'' = x'cosφ + y'sinφ, y'' = - x'sinφ + y'cosφ
в уравнении ax'2 + 2bx'y' + cy'2 = f' коэффициент при x'y' можно сделать равным нулю. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 84]
Докажите, что если
ac - b2 ≠ 0, то с помощью параллельного переноса
x' = x + x0, y' = y + y0 уравнение Q(x, y) + 2dx + 2ey = f, где Q (x, y) = ax2 + 2bxy + cy2 можно привести к виду
ax'2 + 2bx'y' + cy'2 = f',
где f' = f - Q(x0, y0) + 2(dx0 + ey0).
Докажите, что с помощью поворота
x'' = x'cosφ + y'sinφ, y'' = - x'sinφ + y'cosφ
в уравнении ax'2 + 2bx'y' + cy'2 = f' коэффициент при x'y' можно сделать равным нулю.
Докажите, что при повороте x'' = x'cosφ + y'sinφ, y'' = - x'sinφ + y'cosφ выражение ax'2 + 2bx'y' + cy'2 переходит в a1x'2 + 2b1x''y'' + c1y'2, причём a1c1 - b12 = ac - b2.
Докажите, что если ac - b2 ≠ 0, то кривая Q(x, y) + 2dx + 2ey = f, где Q (x, y) = ax2 + 2bxy + cy2 изометрична либо кривой
Докажите, что если ac - b2 = 0, то кривая Q(x, y) + 2dx + 2ey = f, где Q (x, y) = ax2 + 2bxy + cy2 изометрична либо кривой y2 = 2px (называемой параболой), либо паре параллельных прямых y2 = c2, либо паре слившихся прямых y2 = 0, либо представляет собой пустое множество.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 84]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке