ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На сколько частей делят плоскость n прямых общего положения, то есть таких, что никакие две не параллельны и никакие три не проходят через одну точку? а) На параллельных прямых a и b даны точки A и B.
Проведите через данную точку C прямую l, пересекающую прямые a
и b в таких точках A1 и B1, что AA1 = BB1.
Дан треугольник ABC и точки X, Y, не лежащие на его описанной окружности Ω. Пусть A1, B1, C1 – проекции X на BC, CA, AB, а A2, B2, C2 – проекции Y. Докажите, что перпендикуляры, опущенные из A1, B1, C1 на, соответственно, B2C2, C2A2, A2B2, пересекаются в одной точке тогда и только тогда, когда прямая XY проходит через центр Ω. Точки A и B лежат на диаметре данной окружности.
Проведите через них две равные хорды с общим концом.
Сумма двух цифр a и b делится на 7. Докажите, что число aba также делится на 7. а) В треугольнике ABC проведена биссектриса BD внутреннего или внешнего угла. Докажите, что AD : DC = AB : BC. б) Докажите, что центр O вписанной окружности треугольника ABC делит биссектрису AA1 в отношении AO : OA1 = (b + c) : a, где a, b, c – длины сторон треугольника.
Докажите, что для монотонно возрастающей функции f (x)
уравнения x = f (f (x)) и x = f (x) равносильны.
Как и раньше загадывается число от 1 до
200, а загадавший отвечает на вопросы ``да'' или ``
нет''. При этом ровно один раз (за все ответы) он имеет право
соврать. Сколько теперь понадобится вопросов, чтобы отгадать
задуманное число?
В некотором государстве каждый город соединён с каждым дорогой. Сумасшедший король хочет ввести на дорогах одностороннее движение так, чтобы выехав из любого города, в него нельзя было вернуться. Можно ли так сделать? Докажите, что среди чисел [2k |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 85]
Найти все такие натуральные n, для которых числа 1/n и 1/n+1 выражаются конечными десятичными дробями.
Докажите, что среди чисел [2k
Докажите иррациональность следующих чисел: а) б) в) г) д) cos 10° ; е) tg 10° ; ж) sin 1° ; з) log23 .
Докажите, что уравнения
Докажите, что уравнение x³ + x²y + y³ = 0 не имеет рациональных решений, кроме (0, 0).
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 85]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке