Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Четырёхугольник ABCD вписан в окружность Ω с центром O, причём O не лежит на диагоналях четырёхугольника. Описанная окружность Ω1 треугольника AOC проходит через середину диагонали BD. Докажите, что описанная окружность Ω2 треугольника BOD проходит через середину диагонали AC.

Вниз   Решение


В ряд стоят $9$ вертикальных столбиков. В некоторых местах между соседними столбиками вставлены горизонтальные палочки, никакие две из которых не находятся на одной высоте. Жук ползёт снизу вверх; когда он встречает палочку, он переползает по ней на соседний столбик и продолжает ползти вверх. Известно, что если жук начинает внизу первого столбика, то он закончит свой путь на девятом столбике. Всегда ли можно убрать одну из палочек так, чтобы жук в конце пути оказался наверху пятого столбика?

Например, если палочки расположены как на рисунке, то жук будет ползти по сплошной линии. Если убрать третью палочку на пути жука, то он поползёт по пунктирной линии.

ВверхВниз   Решение


Однажды барон Мюнхгаузен, вернувшись с прогулки, рассказал, что половину пути он шёл со скоростью 5 км/ч, а половину времени, затраченного на прогулку, – со скоростью 6 км/ч. Не ошибся ли барон?

ВверхВниз   Решение


Дано уравнение  xn – a1xn–1a2xn–2 – ... – an–1x – an = 0,  где  a1 ≥ 0,  a2 ≥ 0,  an ≥ 0.
Доказать, что это уравнение не может иметь двух положительных корней.

ВверхВниз   Решение


а) Докажите, что расстояния от любой точки параболы до фокуса и до директрисы равны.
б) Докажите, что множество точек, для которых расстояния до некоторой фиксированной точки и до некоторой фиксированной прямой равны, является параболой.

ВверхВниз   Решение


Пусть f(x) – многочлен степени n с корнями α1, ..., αn. Определим многоугольник M как выпуклую оболочку точек α1, ..., αn на комплексной плоскости. Докажите, что корни производной этого многочлена лежат внутри многоугольника M.

ВверхВниз   Решение


При каких p и q двучлен  x4 + 1  делится на  x² + px + q?

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 45]      



Задача 60980  (#06.057)

Тема:   [ Теорема Безу. Разложение на множители ]
Сложность: 3+
Классы: 8,9,10

При каких значениях параметра a многочлен  P(x) = xn + axn–2  (n ≥ 2)  делится на  x – 2 ?

Прислать комментарий     Решение

Задача 60981  (#06.058)

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Комплексные числа помогают решить задачу ]
Сложность: 3+
Классы: 8,9,10

При каких p и q двучлен  x4 + 1  делится на  x² + px + q?

Прислать комментарий     Решение

Задача 60982  (#06.059)

Темы:   [ Теорема Безу. Разложение на множители ]
[ Кубические многочлены ]
Сложность: 3+
Классы: 8,9,10

При каких a многочлен  P(x) = a³x5 + (1 – a)x4 + (1 + a³)x² + (1 – 3a)xa³  делится на  x – 1?

Прислать комментарий     Решение

Задача 78509  (#06.060)

Тема:   [ Теорема Безу. Разложение на множители ]
Сложность: 4-
Классы: 8,9,10

Найти все многочлены P(x), для которых справедливо тождество:  xP(x – 1) ≡ (x – 26)P(x).

Прислать комментарий     Решение

Задача 78054  (#06.061)

Темы:   [ Уравнения высших степеней (прочее) ]
[ Монотонность и ограниченность ]
Сложность: 3+
Классы: 8,9,10,11

Дано уравнение  xn – a1xn–1a2xn–2 – ... – an–1x – an = 0,  где  a1 ≥ 0,  a2 ≥ 0,  an ≥ 0.
Доказать, что это уравнение не может иметь двух положительных корней.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 45]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .