ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите у чисел   а)  (6 + )1999;   б)  (6 + )1999;   в)  (6 + )2000   первые 1000 знаков после запятой.

   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 100]      



Задача 61473  (#11.046)

 [Лягушка-путешественница]
Темы:   [ Классическая комбинаторика (прочее) ]
[ Линейные рекуррентные соотношения ]
[ Индукция (прочее) ]
Сложность: 3-
Классы: 9,10,11

Лягушка прыгает по вершинам треугольника ABC, перемещаясь каждый раз в одну из соседних вершин.
Сколькими способами она может попасть из A в A за n прыжков?

Прислать комментарий     Решение

Задача 61474  (#11.047)

Темы:   [ Линейные рекуррентные соотношения ]
[ Индукция (прочее) ]
[ Геометрическая прогрессия ]
[ Классическая комбинаторика (прочее) ]
[ Дискретное распределение ]
[ Производящие функции ]
Сложность: 4+
Классы: 10,11

Лягушка прыгает по вершинам шестиугольника ABCDEF, каждый раз перемещаясь в одну из соседних вершин.
  а) Сколькими способами она может попасть из A в C за n прыжков?
  б) Тот же вопрос, но при условии, что ей нельзя прыгать в D?
Лягушка-сапер.
  в) Пусть путь лягушки начинается в вершине A, а в вершине D находится мина. Каждую секунду она делает очередной прыжок. Какова вероятность того, что она еще будет жива через n секунд?
  г)* Какова средняя продолжительность жизни таких лягушек?

Прислать комментарий     Решение

Задача 61475  (#11.048)

Темы:   [ Квадратные корни (прочее) ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 9,10,11

Докажите, что для любого числа p > 2 найдется такое число $ \beta$, что

$\displaystyle \underbrace{\sqrt{2+\sqrt{2+\ldots+\sqrt{2+
\sqrt{2+p}}}}}_{n~\mbox{\scriptsize {радикалов}}}^{}\,$ = $\displaystyle \beta^{2^n}_{}$ - $\displaystyle \beta^{-2^n}_{}$.


Прислать комментарий     Решение

Задача 61476  (#11.049)

Тема:   [ Линейные рекуррентные соотношения ]
Сложность: 4
Классы: 9,10,11

Садовник, привив черенок редкого растения, оставляет его расти два года, а затем ежегодно берет от него по 6 черенков. С каждым новым черенком он поступает аналогично. Сколько будет растений и черенков на n-ом году роста первоначального растения?

Прислать комментарий     Решение

Задача 61477  (#11.050)

Темы:   [ Квадратные корни (прочее) ]
[ Десятичные дроби ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 3+
Классы: 10,11

Найдите у чисел   а)  (6 + )1999;   б)  (6 + )1999;   в)  (6 + )2000   первые 1000 знаков после запятой.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 100]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .