Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Автор: Фомин С.В.

Лестница имеет 100 ступенек. Коля хочет спуститься по лестнице, при этом он двигается начиная сверху прыжками вниз и вверх по очереди. Прыжки бывают трёх типов – на шесть ступенек (через пять на шестую), на семь и на восемь. Два раза на одну ступеньку Коля не становится. Сможет ли он спуститься?

Вниз   Решение


Существуют ли такие натуральные n и k, что десятичная запись числа 2n начинается числом 5k, а десятичная запись числа 5n начинается числом 2k?

ВверхВниз   Решение


Дан правильный треугольник ABC с центром O. Прямая, проходящая через вершину C, пересекает описанную окружность треугольника AOB в точках D и E. Докажите, что точки A, O и середины отрезков BD, BE лежат на одной окружности.

ВверхВниз   Решение


Даны 100 чисел. Когда каждое из них увеличили на 1, сумма их квадратов не изменилась. Каждое число ещё раз увеличили на 1.
Изменится ли сумма квадратов на этот раз, и если да, то на сколько?

ВверхВниз   Решение


Петя нарисовал на плоскости квадрат, разделил на 64 одинаковых квадратика и раскрасил их в шахматном порядке в чёрный и белый цвета. После этого он загадал точку, находящуюся строго внутри одного из этих квадратиков. Вася может начертить на плоскости любую замкнутую ломаную без самопересечений и получить ответ на вопрос, находится ли загаданная точка строго внутри ломаной или нет. За какое наименьшее количество таких вопросов Вася может узнать, какого цвета загаданная точка – белого или чёрного?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 64451  (#1)

Темы:   [ Математическая логика (прочее) ]
[ Объединение, пересечение и разность множеств ]
[ Шахматные доски и шахматные фигуры ]
[ Оценка + пример ]
Сложность: 4-
Классы: 8,9,10,11

Петя нарисовал на плоскости квадрат, разделил на 64 одинаковых квадратика и раскрасил их в шахматном порядке в чёрный и белый цвета. После этого он загадал точку, находящуюся строго внутри одного из этих квадратиков. Вася может начертить на плоскости любую замкнутую ломаную без самопересечений и получить ответ на вопрос, находится ли загаданная точка строго внутри ломаной или нет. За какое наименьшее количество таких вопросов Вася может узнать, какого цвета загаданная точка – белого или чёрного?

Прислать комментарий     Решение

Задача 30263  (#2)

Темы:   [ Многочлены (прочее) ]
[ Многочлен нечетной степени имеет действительный корень ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 9,10,11

Автор: Жуков Г.

Найдите все n, при которых для любых двух многочленов P(x) и Q(x) степени n найдутся такие одночлены axk и bxl
(0 ≤ k ≤ n,  0 ≤ l ≤ n),  что графики многочленов  P(x) + axk  и  Q(x) + bxl  не будут иметь общих точек.

Прислать комментарий     Решение

Задача 35489  (#3)

Темы:   [ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Средняя линия треугольника ]
Сложность: 4
Классы: 9,10,11

Дан правильный треугольник ABC с центром O. Прямая, проходящая через вершину C, пересекает описанную окружность треугольника AOB в точках D и E. Докажите, что точки A, O и середины отрезков BD, BE лежат на одной окружности.

Прислать комментарий     Решение

Задача 32134  (#4)

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Примеры и контрпримеры. Конструкции ]
[ Арифметика остатков (прочее) ]
Сложность: 4
Классы: 9,10,11

Автор: Bong-Gyun Koh

Каждое ли целое число можно записать как сумму кубов нескольких целых чисел, среди которых нет одинаковых?

Прислать комментарий     Решение

Задача 102995  (#5)

Темы:   [ Характеристические свойства и рекуррентные соотношения ]
[ Доказательство от противного ]
[ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 9,10,11

Автор: Стунжас Л.

Существуют ли такие две функции  f и g, принимающие только целые значения, что для любого целого x выполнены соотношения:
  а)  f(f(x)) = x,  g(g(x)) = x,   f(g(x)) > x,  g(f(x)) > x?
  б)  f(f(x)) < x, g(g(x)) < x,   f(g(x)) > x,  g(f(x)) > x?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .