Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 19 задач
Версия для печати
Убрать все задачи

Пусть движение плоскости переводит фигуру F в фигуру F'. Для каждой пары соответственных точек A и A' рассмотрим середину X отрезка AA'. Докажите, что либо все точки X совпадают, либо все они лежат на одной прямой, либо образуют фигуру, подобную F.

Вниз   Решение


Шестиугольник ABCDEF вписан в окружность радиуса R, причем AB = CD = EF = R. Докажите, что середины сторон BC, DE и FA образуют правильный треугольник.

ВверхВниз   Решение


Правильные треугольники ABC, CDE, EHK (вершины обходятся в направлении против часовой стрелки) расположены на плоскости так, что $ \overrightarrow{AD}$ = $ \overrightarrow{DK}$. Докажите, что треугольник BHD тоже правильный.

ВверхВниз   Решение


Доказать, что  22n–1 + 3n + 4  делится на 9 при любом n.

ВверхВниз   Решение


а)  sin$ \alpha$ + sin$ \beta$ + sin$ \gamma$ $ \leq$ 3$ \sqrt{3}$/2;
б)  cos($ \alpha$/2) + cos($ \beta$/2) + cos($ \gamma$/2) $ \leq$ 3$ \sqrt{3}$/2.

ВверхВниз   Решение


Несколько кругов одного радиуса положили на стол так, что никакие два не перекрываются. Докажите, что круги можно раскрасить в четыре цвета так, что любые два касающихся круга будут разного цвета.

ВверхВниз   Решение


Докажите, что композицию чётного числа симметрий относительно прямых нельзя представить в виде композиции нечётного числа симметрий относительно прямых.

ВверхВниз   Решение


Триангуляцией многоугольника называют его разбиение на треугольники, обладающее тем свойством, что эти треугольники либо имеют общую сторону, либо имеют общую вершину, либо не имеют общих точек (т. е. вершина одного треугольника не может лежать на стороне другого). Докажите, что треугольники триангуляции можно раскрасить в три цвета так, что имеющие общую сторону треугольники будут разного цвета.

ВверхВниз   Решение


Докажите, что любое движение плоскости является композицией не более чем трех симметрий относительно прямых.

ВверхВниз   Решение


Докажите, что для любого натурального n  10n + 18n – 1  делится на 27.

ВверхВниз   Решение


Каждая из трех прямых делит площадь фигуры пополам. Докажите, что часть фигуры, заключенная внутри треугольника, образованного этими прямыми, имеет площадь, не превосходящую 1/4 площади всей фигуры.

ВверхВниз   Решение


Даны три прямые a, b, c. Пусть T = SaoSboSc. Докажите, что ToT — параллельный перенос (или тождественное отображение).

ВверхВниз   Решение


Даны точки A и B и окружность S. Постройте на окружности S такие точки C и D, что AC| BD и дуга CD имеет данную величину $ \alpha$.

ВверхВниз   Решение


а) Через точку P проводятся всевозможные секущие окружности S. Найдите геометрическое место точек пересечения касательных к окружности S, проведенных в двух точках пересечения окружности с секущей.
б) Через точку P проводятся всевозможные пары секущих AB и CD окружности S (A, B, C, D — точки пересечения с окружностью). Найдите геометрическое место точек пересечения прямых AC и BD.

ВверхВниз   Решение


Существует ли выпуклый многоугольник, у которого каждая сторона равна какой-нибудь диагонали, а каждая диагональ– какой-нибудь стороне?

ВверхВниз   Решение


 Фиксированы окружность, точка A на ней и точка K вне окружности. Секущая, проходящая через K, пересекает окружность в точках P и Q. Докажите, что ортоцентры треугольников APQ лежат на фиксированной окружности.

ВверхВниз   Решение


Автор: Фольклор

Доказать, что из 17 различных натуральных чисел либо найдутся пять таких чисел a, b, c, d, e, что каждое из чисел этой пятёрки, кроме последнего, делится на число, стоящее за ним, либо найдутся пять таких чисел, что ни одно из них не делится на другое.

ВверхВниз   Решение


На сфере отмечено пять точек, никакие три из которых не лежат на большой окружности (большая окружность – это окружность, по которой пересекаются сфера и плоскость, проходящая через её центр). Две большие окружности, не проходящие через отмеченные точки, называются эквивалентными, если одну из них с помощью непрерывнвого перемещения по сфере можно перевести в другую так, что в процессе перемещения окружность не проходит через отмеченные точки.
  а) Сколько можно нарисовать окружностей, не проходящих через отмеченные точки и не эквивалентных друг другу?
  б) Та же задача для n отмеченных точек.

ВверхВниз   Решение


Автор: Шноль Д.Э.

Врун всегда лжёт, Хитрец говорит правду или ложь, когда захочет, а Переменчик говорит то правду, то ложь попеременно. Путешественник встретил Вруна, Хитреца и Переменчика, которые знают друг друга. Сможет ли он, задавая им вопросы, выяснить, кто есть кто?

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 9]      



Задача 64685  (#6.6)

Темы:   [ Теория алгоритмов ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3+
Классы: 6,7,8

К кабинке канатной дороги, ведущей на гору, подошли четыре человека, которые весят 50, 60, 70 и 90 кг. Смотрителя нет, а в автоматическом режиме кабинка ездит туда-сюда только с грузом от 100 до 250 кг (в частности, пустой она не ездит), при условии, что пассажиров можно рассадить на две скамьи так, чтобы веса на скамьях отличались не более, чем на 25 кг. Каким образом все они смогут подняться на гору?

Прислать комментарий     Решение

Задача 64686  (#6.7)

Тема:   [ Математическая логика (прочее) ]
Сложность: 3
Классы: 6,7

Автор: Шноль Д.Э.

Врун всегда лжёт, Хитрец говорит правду или ложь, когда захочет, а Переменчик говорит то правду, то ложь попеременно. Путешественник встретил Вруна, Хитреца и Переменчика, которые знают друг друга. Сможет ли он, задавая им вопросы, выяснить, кто есть кто?

Прислать комментарий     Решение

Задача 64687  (#6.8)

Тема:   [ Задачи на проценты и отношения ]
Сложность: 3
Классы: 6,7

Автор: Шноль Д.Э.

Вася положил некую сумму в рублях в банк под 20% годовых. Петя взял другую сумму в рублях, перевел её в доллары и положил в банк под 10% годовых. За год цена одного доллара в рублях увеличилась на 9,5%. Когда через год Петя перевел свой вклад в рубли, то оказалось, что за год Вася и Петя получили одинаковую прибыль. У кого первоначально была сумма больше – у Васи или у Пети?

Прислать комментарий     Решение

Задача 64688  (#6.9)

Темы:   [ Наглядная геометрия ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7

Автор: Фольклор

Четыре одинаковых кубика расположили на столе так, как показано на рисунке. Одна из граней каждого кубика покрашена в чёрный цвет. За один шаг разрешается повернуть одинаковым образом оба кубика из одного ряда (вертикального или горизонтального). Докажите, что, независимо от начального расположения чёрных граней, за несколько таких шагов можно расположить кубики чёрными гранями вверх.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .