ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Четырёхугольник ABCD вписан в окружность Ω с центром O, причём O не лежит на диагоналях четырёхугольника. Описанная окружность Ω1 треугольника AOC проходит через середину диагонали BD. Докажите, что описанная окружность Ω2 треугольника BOD проходит через середину диагонали AC. В ряд стоят $9$ вертикальных столбиков. В некоторых местах между соседними столбиками вставлены горизонтальные палочки, никакие две из которых не находятся на одной высоте. Жук ползёт снизу вверх; когда он встречает палочку, он переползает по ней на соседний столбик и продолжает ползти вверх. Известно, что если жук начинает внизу первого столбика, то он закончит свой путь на девятом столбике. Всегда ли можно убрать одну из палочек так, чтобы жук в конце пути оказался наверху пятого столбика? Однажды барон Мюнхгаузен, вернувшись с прогулки, рассказал, что половину пути он шёл со скоростью 5 км/ч, а половину времени, затраченного на прогулку, – со скоростью 6 км/ч. Не ошибся ли барон? Дано уравнение xn – a1xn–1 – a2xn–2 – ... – an–1x – an = 0, где a1 ≥ 0, a2 ≥ 0, an ≥ 0. а) Докажите, что расстояния от любой точки параболы до фокуса и до директрисы
равны.
Пусть f(x) – многочлен степени n с корнями α1, ..., αn. Определим многоугольник M как выпуклую оболочку точек α1, ..., αn на комплексной плоскости. Докажите, что корни производной этого многочлена лежат внутри многоугольника M. При каких p и q двучлен x4 + 1 делится на x² + px + q? На плоскости дано n > 4 точек, никакие три из которых не лежат на одной прямой. В поход пошли 20 туристов. Самому старшему из них 35 лет, а самому младшему 20 лет. Верно ли, что среди туристов есть одногодки? Учительница продиктовала Вовочке угловые коэффициенты и свободные члены трёх разных линейных функций, графики которых параллельны. Невнимательный Вовочка при записи каждой из функций поменял местами угловой коэффициент и свободный член и построил графики получившихся функций. Сколько могло получиться точек, через которые проходят хотя бы два графика? В треугольнике ABC точка E — середина
стороны BC, точка D лежит на стороне AC, AC = 1,
Известно, что выражение 14x + 13y делится на 11 при некоторых целых x и y. Докажите, что 19x + 9y также делится на 11 при таких x и y. Прямая, проходящая через центр I вписанной окружности треугольника ABC, перпендикулярна AI и пересекает стороны AB и AC в точках C' и B' соответственно. В треугольниках BC'I и CB'I провели высоты C'C1 и B'B1 соответственно. Докажите, что середина отрезка B1C1 лежит на прямой, проходящей через точку I и перпендикулярной BC. На боковых сторонах $AB$ и $BC$ равнобедренного остроугольного треугольника $ABC$ выбраны точки $M$ и $K$. Отрезки $CM$ и $AK$ пересекаются в точке $E$. Оказалось, что $\angle MEA = \angle ABC$. Докажите, что середины всевозможных отрезков $MK$ лежат на одной прямой. Прямая l касается окружности с диаметром AB
в точке C; M и N — проекции точек A и B на прямую l,
D — проекция точки C на AB. Докажите, что
CD2 = AM . BN.
В равнобедренном треугольнике АВС угол В равен 30°, АВ = ВС = 6. Проведены высота CD треугольника АВС и высота DE треугольника BDC. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 557]
Существует ли треугольник, градусная мера каждого угла которого выражается простым числом?
Найдите сумму цифр в десятичной записи числа 412·521.
В равнобедренном треугольнике АВС угол В равен 30°, АВ = ВС = 6. Проведены высота CD треугольника АВС и высота DE треугольника BDC.
Вася сложил четвёртую степень и квадрат некоторого числа, отличного от нуля, и сообщил результат Пете.
Известно, что
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 557]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке