Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 17 задач
Версия для печати
Убрать все задачи

Пусть BHb, CHc – высоты треугольника ABC. Прямая HbHc пересекает описанную окружность Ω треугольника ABC в точках X и Y. Точки P и Q симметричны X и Y относительно AB и AC соответственно. Докажите, что  PQ || BC.

Вниз   Решение


Автор: Иванов К.

Действительные числа a, b, c, d, по модулю большие единицы, удовлетворяют соотношению   abc + abd + acd + bcd + a + b + c + d = 0.
Докажите, что  

ВверхВниз   Решение


С левого берега реки на правый с помощью одной лодки переправились N туземцев, каждый раз плавая направо вдвоем, а обратно – в одиночку. Изначально каждый знал по одному анекдоту, каждый – свой. На берегах они анекдотов не рассказывали, но в лодке каждый рассказывал попутчику все известные ему на данный момент анекдоты. Для каждого натурального k найдите наименьшее возможное значение N, при котором могло случиться так, что в конце каждый туземец знал, кроме своего, еще не менее чем k анекдотов.

ВверхВниз   Решение


Вписанная окружность прямоугольного треугольника АВС (угол С – прямой) касается сторон АВ, ВС и СА в точках С1, А1, В1 соответственно. Высоты треугольника А1В1С1 пересекаются в точке D. Найдите расстояние между точками C и D, если длины катетов треугольника АВС равны 3 и 4.

ВверхВниз   Решение


На сторонах АВ и АС равнобедренного треугольника АВС  (АВ = АС)  соответственно отмечены точки Ми N так, что  АN > AM.  Прямые MN и ВС пересекаются в точке K. Сравните длины отрезков MK и MB.

ВверхВниз   Решение


На некоторые клетки квадратной доски 4×4 выкладывают стопкой золотые монеты, а на остальные клетки – серебряные. Можно ли положить монеты так, чтобы в каждом квадрате 3×3 серебряных монет было больше, чем золотых, а на всей доске золотых было больше, чем серебряных?

ВверхВниз   Решение


Автор: Mudgal A.

В остроугольном треугольнике ABC углы B и C больше 60°. Точки P, Q на сторонах AB, AC таковы, что A, P, Q и ортоцентр треугольника H лежат на одной окружности; K – середина отрезка PQ. Докажите, что  ∠BKC > 90°.

ВверхВниз   Решение


Поле представляет собой клетчатый квадрат 41×41, в одной из клеток которого замаскирован танк. Истребитель за один выстрел обстреливает одну клетку. Если произошло попадание, танк переползает на соседнюю по стороне клетку поля, если нет – остаётся на месте. При этом после выстрела пилот истребителя не знает, произошло ли попадание. Для уничтожения танка надо попасть в него два раза. Каким наименьшим числом выстрелов можно обойтись для того, чтобы гарантировать, что танк уничтожен?

ВверхВниз   Решение


Пусть AK и BL – высоты остроугольного треугольника ABC, а Ω – вневписанная окружность ABC, касающаяся стороны AB. Общие внутренние касательные к описанной окружности ω треугольника CKL и окружности Ω пересекают прямую AB в точках P и Q. Докажите, что  AP = BQ.

ВверхВниз   Решение


Пусть I – центр сферы, вписанной в тетраэдр ABCD, A', B', C', D' – центры описанных сфер тетраэдров IBCD, ICDA, IDBA, IABC соответственно.
Докажите, что описанная сфера тетраэдра ABCD целиком лежит внутри описанной сферы тетраэдра A'B'C'D'.

ВверхВниз   Решение


На плоскости нарисованы неравнобедренный треугольник ABC и вписанная в него окружность ω. Пользуясь только линейкой и проведя не более восьми линий, постройте на ω такие точки A′, B′, C′, что лучи B′C′, C′A′, A′B′ проходят через A, B, C соответственно.

ВверхВниз   Решение


Автор: Соколов А.

Дан выпуклый четырёхугольник ABCD. Пусть ωA, ωB, ωC, ωD – описанные окружности треугольников BCD, ACD, ABD, ABC соответственно. Обозначим через XA произведение степени точки A относительно ωA на площадь треугольника BCD. Аналогично определим XB, XC, XD. Докажите, что  XA + XB + XC + XD = 0.

ВверхВниз   Решение


Сумма цифр натурального числа n равна сумме цифр числа  2n + 1.  Могут ли быть равными суммы цифр чисел  3n – 3  и  n – 2?

ВверхВниз   Решение


На плоскости дан отрезок AB. Рассмотрим всевозможные остроугольные треугольники со стороной AB. Найдите геометрическое место
  а) вершин их наибольших углов;
  б) их центров вписанных окружностей.

ВверхВниз   Решение


Дан квадрат ABCD. Первая окружность касается сторон угла A, вторая – сторон угла B, причём сумма диаметров окружностей равна стороне квадрата. Докажите, что одна из общих касательных этих окружностей пересекает сторону AB в её середине.

ВверхВниз   Решение


Автор: Дидин М.

В остроугольном неравнобедренном треугольнике ABC проведены медиана AM и высота AH. На прямых AB и AC отмечены точки Q и P соответственно так, что  QMAC  и  PMAB.  Описанная окружность треугольника PMQ пересекает прямую BC вторично в точке X. Докажите, что  BH = CX.

ВверхВниз   Решение


В треугольнике центр описанной окружности лежит на вписанной окружности.
Докажите, что отношение наибольшей стороны треугольника к наименьшей меньше 2.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 48]      



Задача 66209  (#6)

Темы:   [ Четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Теоремы Чевы и Менелая ]
Сложность: 4-
Классы: 8,9,10

Дан четырёхугольник ABCD, в котором  AC = BD = AD;  точки E и F – середины AB и CD соответственно; O – точка пересечения диагоналей четырёхугольника. Докажите, что EF проходит через точки касания вписанной окружности треугольника AOD с его сторонами AO и OD.

Прислать комментарий     Решение

Задача 66322  (#8.6)

Темы:   [ Вписанные и описанные окружности ]
[ Покрытия ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
Сложность: 3+
Классы: 8,9

Остроугольный треугольник разбили медианой на два меньших треугольника.
Докажите, что каждый из них можно накрыть полукругом, равным половинке описанного круга исходного треугольника.

Прислать комментарий     Решение

Задача 66311  (#9.6)

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Вспомогательные подобные треугольники ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 3+
Классы: 9,10

Автор: Mahdi Etesami Fard

В прямоугольном треугольнике ABC точка D – середина высоты, опущенной на гипотенузу AB. Прямые, симметричные AB относительно AD и BD, пересекаются в точке F. Найдите отношение площадей треугольников ABF и ABC.

Прислать комментарий     Решение

Задача 66319  (#10.6)

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Касательные к сферам ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 10,11

Сфера, вписанная в пирамиду SABC, касается граней SAB, SBC, SCA в точках D, E, F соответственно.
Найдите все возможные значения суммы углов SDA, SEB и SFC.

Прислать комментарий     Решение

Задача 66210  (#7)

Темы:   [ Вписанные и описанные окружности ]
[ Неравенства для элементов треугольника (прочее) ]
[ Формула Эйлера ]
Сложность: 4-
Классы: 8,9,10

В треугольнике центр описанной окружности лежит на вписанной окружности.
Докажите, что отношение наибольшей стороны треугольника к наименьшей меньше 2.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .