ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а) Квадрат со стороной 1 покрыт несколькими меньшими квадратами
со сторонами, параллельными его сторонам. Докажите, что среди
них можно выбрать непересекающиеся квадраты, сумма площадей
которых не меньше 1/9.
Точка $X$ расположена внутри параллелограмма $ABCD$. Докажите, что $S_{ABX}+S_{CDX}=S_{BCX}+S_{ADX}$. На плоскости лежат две одинаковые буквы а) Определение (смотри в справочнике)
функций gk,l(x) не позволяет вычислять их значения при x = 1. Но, поскольку функции gk,l(x) являются многочленами, они определены и при x = 1. Докажите равенство б) Какие свойства биномиальных коэффициентов получаются, если в свойства б) – г) из задачи 61522 подставить значение x = 1? В пачке 20 карточек: синие, красные и желтые. Синих в шесть раз меньше, чем желтых, и красных меньше, чем желтых. Какое наименьшее количество карточек надо вытащить не глядя, чтобы среди них обязательно оказалась красная? Треугольник, составленный: а) из медиан; б) из высот треугольника ABC, подобен треугольнику ABC. На клетчатом листе закрасили 25 клеток. Может ли каждая из них иметь нечётное число закрашенных соседей? Разрежьте правильный шестиугольник на 5 частей и сложите из них
квадрат.
На отрезке длиной 1 расположено несколько отрезков, полностью
его покрывающих. Докажите, что можно выбросить некоторые из них
так, чтобы оставшиеся по-прежнему покрывали отрезок и сумма их
длин не превосходила 2.
Поворот с центром O переводит прямую l1 в прямую l2, а точку A1, лежащую на прямой l1, — в точку A2.
Докажите, что точка пересечения прямых l1 и l2 лежит на
описанной окружности треугольника A1OA2.
Треугольники ABC и A1B1C1 таковы, что их соответственные углы равны или составляют в сумме 180°. Вписанная окружность треугольника ABC касается сторон CA и AB в точках B1 и C1, а вневписанная окружность касается продолжения этих сторон в точках B2 и C2. Докажите, что середина стороны BC равноудалена от прямых B1C1 и B2C2. Докажите, что при инверсии с центром O прямая l,
не проходящая через O, переходит в окружность, проходящую через O.
Внутри треугольника ABC взята точка O. Пусть da, db, dc – расстояния от нее до прямых BC, CA, AB. Докажите, что площадь треугольника, стороны которого
равны медианам треугольника площади S, равна 3S/4.
По двум прямым, пересекающимся в точке P,
равномерно с одинаковой скоростью движутся две точки:
по одной прямой — точка A, по другой — точка B. Через
точку P они проходят не одновременно. Докажите, что
в любой момент времени описанная окружность треугольника
ABP проходит через некоторую фиксированную точку, отличную от P.
Окружность разбита точками на 3k дуг: по k дуг длины 1, 2 и 3. Докажите, что найдутся две диаметрально противоположные точки деления. В треугольнике ABC проведена биссектриса AD. Пусть O, O1 и O2 – центры описанных окружностей треугольников ABC, ABD и ACD. Какой угол образуют часовая и минутная стрелки в 4 часа 12 минут? |
Страница: 1 2 >> [Всего задач: 7]
Когда бочка пуста на 30%, она содержит на 30 литров больше меда, чем когда она заполнена на 30%. Сколько литров меда в полной бочке?
Какой угол образуют часовая и минутная стрелки в 4 часа 12 минут?
В пачке 20 карточек: синие, красные и желтые. Синих в шесть раз меньше, чем желтых, и красных меньше, чем желтых. Какое наименьшее количество карточек надо вытащить не глядя, чтобы среди них обязательно оказалась красная?
На бирже Цветочного города 1 лимон и 1 банан можно обменять на 2 апельсина и 23 вишни, а 3 лимона – на 2 банана, 2 апельсина и 14 вишен. Что дороже: лимон или банан?
Точки А, В и С лежат на прямой m, а точки D и Е на ней не лежат. Известно, что AD = AE и BD = BE. Докажите, что CD = CE.
Страница: 1 2 >> [Всего задач: 7]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке