ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Найти все положительные решения системы уравнений Пусть O – центр описанной окружности треугольника ABC. На стороне BC нашлись точки X и Y такие, что AX=BX и AY=CY. Докажите, что окружность, описанная около треугольника AXY, проходит через центры описанных окружностей треугольников AOB и AOC. Петров забронировал квартиру в доме-новостройке, в котором пять одинаковых подъездов. Изначально подъезды нумеровались слева направо, и квартира Петрова имела номер 636. Потом застройщик поменял нумерацию на противоположную (справа налево, см. рисунок). Тогда квартира Петрова стала иметь номер 242. Сколько квартир в доме? (Порядок нумерации квартир внутри подъезда не изменялся.) В пятиугольнике проведены все диагонали. Какие семь углов между двумя диагоналями или между диагоналями и сторонами надо отметить, чтобы из равенства этих углов друг другу следовало, что пятиугольник – правильный? Пусть точка P лежит на описанной окружности треугольника ABC. Точка A1 симметрична ортоцентру треугольника PBC относительно серединного перпендикуляра к BC. Точки B1 и C1 определяются аналогично. Докажите, что точки A1, B1 и C1 лежат на одной прямой. |
Страница: 1 2 >> [Всего задач: 8]
Внутри прямого угла с вершиной O расположен треугольник OAB с прямым углом A. Высота треугольника OAB, опущенная на гипотенузу, продолжена за точку A до пересечения со стороной угла O в точке M. Расстояния от точек M и B до второй стороны угла O равны 2 и 1 соответственно. Найдите OA.
Пусть точка P лежит на описанной окружности треугольника ABC. Точка A1 симметрична ортоцентру треугольника PBC относительно серединного перпендикуляра к BC. Точки B1 и C1 определяются аналогично. Докажите, что точки A1, B1 и C1 лежат на одной прямой.
Четырехугольник ABCD, вписанный в окружность ω, таков что AD=BD=AC. Точка P движется по ω. Прямые AP и DP пересекают прямые CD и AB в точках E и F соответственно. Прямые BE и CF пересекаются в точке Q. Найдите геометрическое место точек Q.
Корабль в тумане пытается пристать к берегу. Экипаж не знает, в какой стороне находится берег, но видит маяк, находящийся на маленьком острове в 10 км от берега, и понимает, что расстояние от корабля до маяка не превышает 10 км (точное расстояние до маяка неизвестно). Маяк окружен рифами, поэтому приближаться к нему нельзя. Может ли корабль достичь берега, проплыв не больше 75 км? (Береговая линия – прямая, траектория до начала движения вычерчивается на дисплее компьютера, после чего автопилот ведет корабль по ней.)
Четырехугольник ABCD описан вокруг окружности радиуса R. Пусть h1 и h2 – высоты опущенные из точки A на стороны BC и CD соответственно. Аналогично h3 и h4 – высоты опущенные из точки C на стороны AB и AD. Докажите, что h1+h2−2Rh1h2=h3+h4−2Rh3h4.
Страница: 1 2 >> [Всего задач: 8]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке