ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
классы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) В треугольнике ABC проведены высоты AA1, BB1
и CC1. Прямые AB и A1B1, BC и B1C1, CA и C1A1
пересекаются в точках C', A' и B'. Докажите, что точки A', B'
и C' лежат на радикальной оси окружности девяти
точек и описанной окружности.
Докажите, что диагонали AD, BE и CF описанного
шестиугольника ABCDEF пересекаются в одной точке (Брианшон).
Даны окружность S и прямая l, не имеющие общих
точек. Из точки P, движущейся по прямой l, проводятся
касательные PA и PB к окружности S. Докажите, что все
хорды AB имеют общую точку.
Некоторое количество точек расположено на плоскости так, что каждые 3 из них можно заключить в круг радиуса r = 1. Доказать, что тогда и все точки можно заключить в круг радиуса 1. На сторонах BC и AC треугольника ABC взяты
точки A1 и B1; l — прямая, проходящая через общие точки
окружностей с диаметрами AA1 и BB1. Докажите, что:
Докажите, что сумма двух нагелиан больше полупериметра треугольника. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]
В треугольнике $ABC$ $\angle A= 45^{\circ}$. Точка $A'$ диаметрально противоположна $A$ на описанной окружности треугольника. Точки $E$, $F$ на сторонах $AB$, $AC$ соответственно таковы. что $A'B=BE$, $A'C=CF$. Пусть $K$ – вторая точка пересечения окружностей $AEF$ и $ABC$. Докажите, что прямая $EF$ делит пополам отрезок $A'K$.
Пусть $A_1$, $B_1$, $C_1$ – середины сторон $BC$, $AC$ и $AB$ треугольника $ABC$, $K$ – основание высоты, проведенной из вершины $A$, а $L$ – точка касания вписанной окружности $\gamma$ со стороной $BC$. Описанные окружности треугольников $LKB_1$ и $A_1LC_1$ вторично пересекают прямую $B_1C_1$ в точках $X$ и $Y$ соответственно. Окружность $\gamma$ пересекает эту прямую в точках $Z$ и $T$. Докажите, что $XZ = YT$.
Пусть точки $P$ и $Q$ изогонально сопряжены относительно треугольника $ABC$. Точка $A_1$, лежащая на дуге $BC$ описанной около треугольника окружности $\omega$, удовлетворяет условию $\angle BA_1P=\angle CA_1Q$. Точки $B_1$ и $C_1$ определены аналогично. Докажите, что прямые $AA_1$, $BB_1$ и $CC_1$ пересекаются в одной точке.
Докажите, что сумма двух нагелиан больше полупериметра треугольника.
Пусть $AA_1$, $BB_1$, $CC_1$ – высоты треугольника $ABC$; $A_0$, $C_0$ – точки пересечения описанной окружности треугольника $A_1BC_1$ с прямыми $A_1B_1$ и $C_1B_1$ соответственно. Докажите, что прямые $AA_0$ и $CC_0$ пересекаются на медиане треугольника $ABC$ или параллельны ей.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке