Страница:
<< 4 5 6 7 8 9
10 >> [Всего задач: 48]
Задача
66977
(#10.1)
|
|
Сложность: 3 Классы: 9,10,11
|
В треугольнике $ABC$ $(\angle C=90^{\circ})$, $CH$ – высота; $HA_{1}, HB_{1}$ – биссектрисы углов $\angle CHB, \angle AHC$ соответственно; $E, F$ – середины отрезков $HB_{1}$ и $HA_{1}$ соответственно. Докажите, что прямые $AE$ и $BF$ пересекаются на биссектрисе угла $ACB$.
Задача
66978
(#10.2)
|
|
Сложность: 4 Классы: 9,10,11
|
В неравнобедренном треугольнике $ABC$ точки $A_0$, $B_0$, $C_0$ – середины сторон $BC$, $CA$, $AB$ соответственно. Биссектриса угла $C$ пересекает прямые $A_0C_0$ и $B_0C_0$ в точках $B_1$ и $A_1$. Докажите, что прямые $AB_1$, $BA_1$ и $A_0B_0$ пересекаются в одной точке.
Задача
66979
(#10.3)
|
|
Сложность: 4 Классы: 9,10,11
|
Биссектриса угла $A$ треугольника $ABC$ ($AB>AC$) пересекает описанную окружность в точке $P$. Перпендикуляр к $AC$ в точке $C$ пересекает биссектрису угла $A$ в точке $K$. Окружность с центром в точке $P$ и радиусом $PK$ пересекает меньшую дугу $PA$ описанной окружности в точке $D$. Докажите, что в четырехугольник $ABDC$ можно вписать окружность.
Задача
66980
(#10.4)
|
|
Сложность: 4 Классы: 10,11
|
Может ли треугольник быть разверткой четырехугольной пирамиды?
Задача
66981
(#10.5)
|
|
Сложность: 4 Классы: 9,10,11
|
Секущая пересекает первую окружность в точках $A_1, B_1$, а вторую – в точках $A_2, B_2$. Вторая секущая пересекает первую окружность в точках $C_1, D_1$, а вторую – в точках $C_2, D_2$. Докажите, что точки
$A_1C_1\cap B_2D_2$, $A_1C_1\cap A_2C_2$, $A_2C_2\cap B_1D_1$, $B_2D_2\cap B_1D_1$ лежат на одной окружности, соосной с данными двумя.
Страница:
<< 4 5 6 7 8 9
10 >> [Всего задач: 48]