ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Годы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Можно ли расставить на футбольном поле четырёх футболистов так, чтобы попарные расстояния между ними равнялись 1, 2, 3, 4, 5 и 6 метров? Дана последовательность чисел 1, 2, 3, 5, 8, 13, 21, ..., в которой каждое число, начиная с третьего, равно сумме двух предыдущих. В этой последовательности выбрано восемь чисел подряд. Докажите, что их сумма не равна никакому числу рассматриваемой последовательности. |
Страница: << 107 108 109 110 111 112 113 >> [Всего задач: 1982]
Доказать, что если p/q – несократимая рациональная дробь, являющаяся корнем полинома f(x) с целыми коэффициентами, то p – kq есть делитель числа f(k) при любом целом k.
Найти все числа, на которые может быть сократима при целом значении l дробь
Докажите, что система уравнений x1 – x2 = a, имеет хотя бы одно положительное решение тогда и только тогда, когда |a| + |b| < 1.
64 неотрицательных числа, сумма которых равна 1956, расположены в форме квадратной таблицы: по восемь чисел в каждой строке и в каждом столбце. Сумма чисел, стоящих на одной из диагоналей, равна 112. Числа, расположенные симметрично относительно этой диагонали, равны. Докажите, что сумма чисел в каждом столбце меньше 1035.
Груз весом 13,5 т упакован в ящики так, что вес каждого ящика не превосходит 350 кг. Докажите, что этот груз можно перевезти на 11 полуторатонках. (Весом пустого ящика можно пренебречь.)
Страница: << 107 108 109 110 111 112 113 >> [Всего задач: 1982]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке