ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Варианты:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На какое целое число надо умножить 999 999 999, чтобы получить число, состоящее из одних единиц? В остроугольном треугольнике ABC высоты AH и CH пересекают стороны BC и AB в точках A1 и C1. Точки A2 и C2 симметричны относительно AC точкам A1 и C1. Докажите, что расстояние между центрами описанных окружностей треугольников C2HA1 и C1HA2 равно AC. Пусть P(x) – многочлен ненулевой степени с целыми коэффициентами. Могут ли все числа P(0), P(1), P(2), ... быть простыми? Доказать, что существует бесконечно много чисел, не представимых в виде суммы трёх кубов. Существует ли тетраэдр, каждое ребро которого являлось бы стороной плоского тупого угла? |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]
В квадратную таблицу N×N записаны все целые числа по следующему закону: 1 стоит на любом месте, 2 стоит в строке с номером, равным номеру столбца, содержащего 1, 3 стоит в строке с номером, равным номеру столбца, содержащего 2, и так далее. На сколько сумма чисел в столбце, содержащем N², отличается от суммы чисел в строке, содержащей 1.
Имеется два набора чисел a1 > a2 > ... > an и b1 > b2 > ... > bn. Доказать, что a1b1 + a2b2 + ... + anbn > a1bn + a2bn–1 + ... + anb1.
Доказать, что не существует тетраэдра, в котором каждое ребро являлось бы стороной плоского тупого угла.
Доказать, что не существует таких натуральных чисел x, y, z, k, что xk + yk = zk при условии x < k, y < k.
Существует ли тетраэдр, каждое ребро которого являлось бы стороной плоского тупого угла?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке