Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Сторона клетки клетчатой бумаги равна 1. По линиям сетки построен прямоугольник со сторонами m и n. Можно ли в прямоугольнике провести по линиям сетки замкнутую ломаную, которая ровно один раз проходила бы через каждый узел сетки, расположенный внутри или на границе прямоугольника? Если можно, то какова её длина?

Вниз   Решение


a1, a2, ..., an — произвольные натуральные числа. Обозначим через bk количество чисел из набора a1, a2, ..., an, удовлетворяющих условию:  aik.
Доказать, что   a1 + a2 + ... + an = b1 + b2 + ...

ВверхВниз   Решение


Из центра правильного 25-угольника проведены векторы во все его вершины.
Как надо выбрать несколько векторов из этих 25, чтобы их сумма имела наибольшую длину?

ВверхВниз   Решение


Плоский многоугольник A1A2...An составлен из n твёрдых стержней, соединенных шарнирами. Доказать, что если n > 4, то его можно деформировать в треугольник.

ВверхВниз   Решение


Решить в натуральных числах уравнение

ВверхВниз   Решение


В концах отрезка пишутся две единицы. Посередине между ними пишется их сумма – число 2. Затем посередине между каждыми двумя соседними из написанных чисел снова пишется их сумма и так далее 1973 раза. Сколько раз будет написано число 1973?

ВверхВниз   Решение


Существует ли такое натуральное число A, что если приписать его к самому себе справа, то полученное число окажется полным квадратом?

ВверхВниз   Решение


Имеются два набора из чисел 1 и –1, в каждом по 1958 чисел. Доказать, что за некоторое число шагов можно превратить первый набор во второй, если на каждом шагу разрешается одновременно изменить знак у любых 11 чисел первого набора. (Два набора считаются одинаковыми, если у них на одинаковых местах стоят одинаковые числа.)

ВверхВниз   Решение


Найти все действительные решения системы  

ВверхВниз   Решение


Точка G — центр шара, вписанного в правильный тетраэдр ABCD. Прямая OG, соединяющая G с точкой O, лежащей внутри тетраэдра, пересекает плоскости граней в точках A', B', C', D'. Доказать, что

$\displaystyle {\frac{OA'}{GA'}}$ + $\displaystyle {\frac{OB'}{GB'}}$ + $\displaystyle {\frac{OC'}{GC'}}$ + $\displaystyle {\frac{OD'}{GD'}}$ = 4.

ВверхВниз   Решение


Внутри треугольника ABC взята точка O. На лучах OA, OB и OC построены векторы единичной длины.
Доказать, что сумма этих векторов имеет длину, меньшую единицы.

ВверхВниз   Решение


Внутри равностороннего треугольника ABC находится точка O. Прямая OG, соединяющая O с центром тяжести (точкой пересечения медиан) G треугольника, пересекает стороны треугольника (или их продолжения) в точках A', B', C'. Доказать, что

$\displaystyle {\frac{OA'}{GA'}}$ + $\displaystyle {\frac{OB'}{GB'}}$ + $\displaystyle {\frac{OC'}{GC'}}$ = 3.

ВверхВниз   Решение


Найти геометрическое место четвёртых вершин прямоугольников, три вершины которых лежат на двух данных концентрических окружностях, а стороны параллельны двум данным прямым.

ВверхВниз   Решение


Какое наибольшее количество чисел можно выбрать из набора 1, 2, ..., 1963 так, чтобы сумма каждых двух выбранных чисел делилась на 26?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42]      



Задача 78483

Тема:   [ Алгебраические неравенства (прочее) ]
Сложность: 3+
Классы: 9,10

a, b, c – такие три числа, что  abc > 0  и  a + b + c > 0.  Доказать, что  an + bn + cn > 0  при любом натуральном n.

Прислать комментарий     Решение

Задача 78486

Темы:   [ Четность и нечетность ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 3+
Классы: 11

Дана система из 25 различных отрезков с общим началом в данной точке A и с концами на прямой l, не проходящей через эту точку. Доказать, что не существует замкнутой 25-звенной ломаной, для каждого звена которой нашёлся бы отрезок системы, равный и параллельный этому звену.

Прислать комментарий     Решение

Задача 78491

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10

Какое наибольшее количество чисел можно выбрать из набора 1, 2, ..., 1963 так, чтобы сумма каждых двух выбранных чисел делилась на 26?

Прислать комментарий     Решение

Задача 78494

Темы:   [ Числовые таблицы и их свойства ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9

В таблицу 8×8 вписаны все целые числа от 1 до 64. Доказать, что при этом найдутся два соседних числа, разность между которыми не меньше 5. (Соседними называются числа, стоящие в клетках, имеющих общую сторону.)

Прислать комментарий     Решение

Задача 78501

Темы:   [ Числовые таблицы и их свойства ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 9,10

В таблицу 9×9 вписаны все целые числа от 1 до 81. Доказать, что найдутся два соседних числа, разность между которыми не меньше 6.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .