Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

На каждой из двенадцати диагоналей граней куба выбирается произвольная точка. Определяется центр тяжести этих двенадцати точек.
Найдите геометрическое место всех таких центров тяжести.

Вниз   Решение


Вычислите суммы:

  а)  1 + a cos φ + ... + ak cos kφ + ... ( |a| < 1);

  б)  a sin φ + ... + ak sin kφ + ... ( |a| < 1);

  в)  

  г)  

ВверхВниз   Решение


а) Найдите сумму всех трёхзначных чисел, которые можно записать с помощью цифр 1, 2, 3, 4 (цифры могут повторяться).
б) Найдите сумму всех семизначных чисел, которые можно получить всевозможными перестановками цифр 1, ..., 7.

ВверхВниз   Решение


На листе бумаги нанесена сетка из n горизонтальных и n вертикальных прямых. Сколько различных замкнутых 2n-звенных ломаных можно провести по линиям сетки так, чтобы каждая ломаная проходила по всем горизонтальным и всем вертикальным прямым?

ВверхВниз   Решение


Из цифр 1, 2, 3, 4, 5, 6, 7 составляются всевозможные семизначные числа, в записи которых каждая из этих цифр встречается ровно один раз.
Доказать, что сумма всех таких чисел делится на 9.

ВверхВниз   Решение


Сколькими способами четыре чёрных шара, четыре белых шара и четыре синих шара можно разложить в шесть различных ящиков?

ВверхВниз   Решение


Доказать, что на сфере нельзя так расположить три дуги больших окружностей в 300o каждая, чтобы никакие две из них не имели ни общих точек, ни общих концов.

Примечание: Большая окружность – это окружность, полученная в сечении сферы плоскостью, проходящей через ее центр.

ВверхВниз   Решение


Окружности  $ \alpha$,$ \beta$,$ \gamma$ и $ \delta$ касаются данной окружности в вершинах A, B, C и D выпуклого четырехугольника ABCD. Пусть  t$\scriptstyle \alpha$$\scriptstyle \beta$ — длина общей касательной к окружностям $ \alpha$ и $ \beta$ (внешней, если оба касания внутренние или внешние одновременно, и внутренней, если одно касание внутреннее, а другое внешнее);  t$\scriptstyle \beta$$\scriptstyle \gamma$, t$\scriptstyle \gamma$$\scriptstyle \delta$ и т. д. определяются аналогично. Докажите, что  t$\scriptstyle \alpha$$\scriptstyle \beta$t$\scriptstyle \gamma$$\scriptstyle \delta$ + t$\scriptstyle \beta$$\scriptstyle \gamma$t$\scriptstyle \delta$$\scriptstyle \alpha$ = t$\scriptstyle \alpha$$\scriptstyle \gamma$t$\scriptstyle \beta$$\scriptstyle \delta$ (обобщенная теорема Птолемея).

ВверхВниз   Решение


На стороны BC и CD параллелограмма ABCD (или на их продолжения) опущены перпендикуляры AM и AN.
Докажите, что треугольники MAN и ABC подобны.

ВверхВниз   Решение


Доказать, что из одиннадцати произвольных бесконечных десятичных дробей можно выбрать две дроби, разность которых имеет в десятичной записи либо бесконечное число нулей, либо бесконечное число девяток.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 42]      



Задача 78474

Темы:   [ Уравнения в целых числах ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 8,9

Решить в целых числах уравнение   xy/z + xz/y + yz/x = 3.

Прислать комментарий     Решение

Задача 78481

Тема:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 3+
Классы: 10,11

Из любых шести точек на плоскости (из которых никакие три не лежат на одной прямой) можно так выбрать три, что треугольник с вершинами в этих точках имеет хотя бы один угол, не больший 30o. Доказать.
Прислать комментарий     Решение


Задача 78508

Темы:   [ Принцип Дирихле (прочее) ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 9,10,11

Доказать, что из одиннадцати произвольных бесконечных десятичных дробей можно выбрать две дроби, разность которых имеет в десятичной записи либо бесконечное число нулей, либо бесконечное число девяток.
Прислать комментарий     Решение


Задача 78490

Темы:   [ Ортогональная (прямоугольная) проекция ]
[ Векторы помогают решить задачу ]
[ Вспомогательные проекции ]
Сложность: 4-
Классы: 7,8

Дан произвольный треугольник ABC и такая прямая l, пересекающая треугольник, что расстояние от неё до точки A равно сумме расстояний до этой прямой от точек B и C (причем B и C лежат по одну сторону от l). Доказать, что все такие прямые проходят через одну точку.
Прислать комментарий     Решение


Задача 78503

Темы:   [ Перестановки и подстановки (прочее) ]
[ Целочисленные решетки (прочее) ]
[ Правило произведения ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
Сложность: 4-
Классы: 8,9,10

На листе бумаги нанесена сетка из n горизонтальных и n вертикальных прямых. Сколько различных замкнутых 2n-звенных ломаных можно провести по линиям сетки так, чтобы каждая ломаная проходила по всем горизонтальным и всем вертикальным прямым?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .