ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Годы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дано 17 натуральных чисел: a1, a2, ..., a17. Известно, что Доказать, что a1 = a2 = ... = a17. Решение |
Страница: << 121 122 123 124 125 126 127 >> [Всего задач: 1957]
Дано 17 натуральных чисел: a1, a2, ..., a17. Известно, что Доказать, что a1 = a2 = ... = a17.
Каждая вершина правильного 13-угольника покрашена либо в чёрный, либо в белый
цвет.
В некоторых клетках квадратной таблицы n×n стоят звёздочки. Известно, что если вычеркнуть любой набор строк (только не все), то найдётся столбец ровно с одной невычеркнутой звёздочкой. (В частности, если строки совсем не вычёркивать, то столбец ровно с одной звёздочкой существует.) Доказать, что если вычеркнуть любой набор столбцов (только не все), то найдётся строка ровно с одной невычеркнутой звёздочкой.
Имеется набор натуральных чисел, причём сумма любых семи из них меньше 15, а
сумма всех чисел из набора равна 100.
В клетках шахматной доски размером n×n расставлены числа: на пересечении k-й строки и m-го столбца стоит число akm. При любой расстановке на этой доске n ладей, при которой никакие две из них не бьют друг друга, сумма закрытых чисел равна 1972. Доказать, что существует два таких набора чисел x1, x2, ..., xn и y1, ..., yn, что при всех k и m выполняется равенство akm = xk + ym.
Страница: << 121 122 123 124 125 126 127 >> [Всего задач: 1957] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|