ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Из целых чисел от 1 до 100 удалили k чисел. Обязательно ли среди оставшихся чисел можно выбрать k различных чисел с суммой 100, если В стране некоторые пары городов соединены односторонними прямыми авиарейсами (между любыми двумя городами есть не более одного рейса). Скажем, что город A доступен для города B, если из B можно долететь в A, возможно, с пересадками. Известно, что для любых двух городов P и Q существует город R, для которого и P, и Q доступны. Докажите, что существует город, для которого доступны все города страны. (Считается, что город доступен для себя.) Школьник едет на олимпиаду на метро, платит рубль и получает сдачу. Доказать, что если он обратно поедет на трамвае, то он сможет уплатить за проезд без сдачи. (Проезд в метро стоил 50 коп., в трамвае – 30 коп. В обращении находились монеты достоинством в 1, 2, 3, 5, 10, 15 и 20 коп.) Семиугольник разбит на выпуклые пяти- и шестиугольники, причём так, что каждая его вершина является вершиной по крайней мере двух многоугольников разбиения. Докажите, что число пятиугольников разбиения не меньше 13. Доказать, что на плоскости нельзя расположить больше четырёх выпуклых многоугольников так, чтобы каждые два из них имели общую сторону. Докажите, что Пусть M – центр тяжести (точка пересечения медиан) треугольника ABC. При повороте на 120° вокруг точки M точка B переходит в точку P, при повороте на 240° вокруг точки M (в том же направлении) точка C переходит в точку Q. Докажите, что либо треугольник APQ – правильный, либо точки A, P, Q совпадают.
Число x таково, что число
x + В Москве живет 2000 скалолазов, в Санкт-Петербурге и Красноярске — по 500, в Екатеринбурге — 200, а остальные 100 рассеяны по территории России. Где нужно устроить чемпионат России по скалолазанию, чтобы транспортные расходы участников были минимальны? Известно, что в выпуклом n-угольнике (n > 3) никакие три диагонали не проходят через одну точку. На двух параллельных прямых a и b выбраны точки A1, A2, ..., Am и B1, B2, ..., Bn
соответственно и проведены все отрезки вида AiBj Будем называть клетчатый многоугольник выдающимся, если он не является прямоугольником и из нескольких его копий можно сложить подобный ему многоугольник. Например, уголок из трёх клеток – выдающийся многоугольник (см. рис.). б) При каких n > 4 существует выдающийся многоугольник из n клеток? В финал конкурса спектаклей к 8 Марта вышли два спектакля. В первом
играли n учеников 5 класса А, а во втором – n учеников 5 класса Б. На спектакле присутствовали 2n мам всех 2n учеников. Лучший спектакль выбирается голосованием мам. Известно, что ровно половина мам честно голосует за лучший спектакль, а другая половина в любом случае голосует за спектакль, в котором участвует её ребенок. Верно ли, что два графа изоморфны, если Выйдя на маршрут в 4 часа утра, альпинист Джеф Лоу к вечеру достиг пика "Свободная Корея". Переночевав на вершине, на следующий день он вышел в то же время и быстро спустился обратно по пути подъема. Докажите, что на маршруте есть такая точка, которую Лоу во время спуска и во время подъема проходил в одно и то же время суток. Доказать, что в прямоугольник размером 2n×2m (n и m — целые) можно уложить в два слоя кости домино размером 1×2 так, чтобы каждый слой полностью покрывал прямоугольник и чтобы никакие две кости из разных слоёв не совпадали друг с другом. |
Страница: 1 2 >> [Всего задач: 6]
Доказать, что в прямоугольник размером 2n×2m (n и m — целые) можно уложить в два слоя кости домино размером 1×2 так, чтобы каждый слой полностью покрывал прямоугольник и чтобы никакие две кости из разных слоёв не совпадали друг с другом.
Существует ли на плоскости конечный набор различных векторов
Найти все пары целых чисел (x, y), удовлетворяющие уравнению 3·2x + 1 = y².
На плоскости расположено несколько прямых и точек. Доказать, что на плоскости найдётся точка A, не совпадающая ни с одной из данных точек, расстояние от которой до любой из данных точек больше расстояния от неё до любой из данных прямых.
У белой сферы 12% её площади окрашено в красный цвет. Доказать, что в сферу можно вписать параллелепипед, у которого все вершины белые.
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке