Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

На отрезке AE по одну сторону от него построены равносторонние треугольники ABC и CDE; M и P — середины отрезков AD и BE. Докажите, что треугольник CPM равносторонний.

Вниз   Решение


Даны две точки A и B и окружность. Найти на окружности точку X так, чтобы прямые AX и BX отсекли на окружности хорду CD, параллельную данной прямой MN.

ВверхВниз   Решение


К некоторому натуральному числу справа последовательно приписали два двузначных числа. Полученное число оказалось равным кубу суммы трёх исходных чисел. Найдите все возможные тройки исходных чисел.

ВверхВниз   Решение


Два квадрата расположены, как показано на рисунке. Докажите, что площадь чёрного треугольника равна сумме площадей серых.

ВверхВниз   Решение


Автор: Жуков Г.

Учитель собирается дать детям задачу следующего вида. Он сообщит им, что он задумал многочлен P(x) степени 2017 с целыми коэффициентами, старший коэффициент которого равен 1. Затем он сообщит им k целых чисел n1, n2, ..., nk и отдельно сообщит значение выражения  P(n1)P(n2)...P(nk).  По этим данным дети должны найти многочлен, который мог бы задумать учитель. При каком наименьшем k учитель сможет составить задачу такого вида так, чтобы многочлен, найденный детьми, обязательно совпал бы с задуманным?

ВверхВниз   Решение


Дан треугольник ABC. Построены четыре окружности равного радиуса $ \rho$ так, что одна из них касается трех других, а каждая из этих трех касается двух сторон треугольника. Найдите $ \rho$, если радиусы вписанной и описанной окружностей треугольника равны r и R соответственно.

ВверхВниз   Решение


На плоскости дано 4000 точек, никакие три из которых не лежат на одной прямой. Докажите, что существует 1000 непересекающихся четырехугольников (возможно, невыпуклых) с вершинами в этих точках.

ВверхВниз   Решение


На плоскости дано n точек, причем из любой четверки этих точек можно выбросить одну точку так, что оставшиеся точки будут лежать на одной прямой. Докажите, что из данных точек можно выбросить одну точку так, что все оставшиеся точки будут лежать на одной прямой.

ВверхВниз   Решение


Из точки, лежащей внутри выпуклого n-угольника, проведены лучи, перпендикулярные его сторонам и пересекающие стороны (или их продолжения). На этих лучах отложены векторы a1,...,an, длины которых равны длинам соответствующих сторон. Докажите, что a1 +...+ an = 0.

ВверхВниз   Решение


Докажите, что если ac - b2 ≠ 0, то кривая Q(xy) + 2dx + 2ey = f, где Q (xy) = ax2 + 2bxy + cy2 изометрична либо кривой $ {\dfrac{x^2}{\alpha^2}}$ + $ {\dfrac{y^2}{\beta^2}}$ = 1 (называемой эллипсом), либо кривой $ {\dfrac{x^2}{\alpha^2}}$ - $ {\dfrac{y^2}{\beta^2}}$ = 1, (называемой гиперболой), либо паре пересекающихся прямых $ {\dfrac{x^2}{\alpha^2}}$ = $ {\dfrac{y^2}{\beta^2}}$, либо представляет собой одну точку или пустое множество.

ВверхВниз   Решение


Верно ли, что любой треугольник можно разрезать на 1000 частей, из которых можно сложить квадрат?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 86106  (#1)

Тема:   [ Квадратные уравнения. Теорема Виета ]
Сложность: 3+
Классы: 8,9,10

Дискриминанты трёх приведённых квадратных трёхчленов равны 1, 4 и 9.
Докажите, что можно выбрать по одному корню каждого из них так, чтобы их сумма равнялась сумме оставшихся корней.

Прислать комментарий     Решение

Задача 86107  (#2)

Темы:   [ Деление с остатком ]
[ Примеры и контрпримеры. Конструкции ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 3+
Классы: 7,8,9

Существует ли 2005 таких различных натуральных чисел, что сумма любых 2004 из них делится на оставшееся число?

Прислать комментарий     Решение

Задача 108094  (#3)

Темы:   [ Пересекающиеся окружности ]
[ Вписанный угол равен половине центрального ]
[ Окружность, вписанная в угол ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 9,10,11

Окружность Ω1 проходит через центр окружности Ω2. Из точки C, лежащей на Ω1, проведены касательные к Ω2, вторично пересекающие Ω1 в точках A и B. Докажите, что отрезок AB перпендикулярен линии центров окружностей.

Прислать комментарий     Решение

Задача 86109  (#4)

Темы:   [ Разные задачи на разрезания ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Примеры и контрпримеры. Конструкции ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4
Классы: 8,9,10

Верно ли, что любой треугольник можно разрезать на 1000 частей, из которых можно сложить квадрат?
Прислать комментарий     Решение


Задача 86110  (#5)

Темы:   [ НОД и НОК. Взаимная простота ]
[ Периодичность и непериодичность ]
Сложность: 4
Классы: 9

На окружности расставлено n цифр, отличных от 0. Сеня и Женя переписали себе в тетрадки  n – 1  цифру, читая их по часовой стрелке. Оказалось, что хотя они начали с разных мест, записанные ими (n–1)-значные числа совпали. Докажите, что окружность можно разрезать на несколько дуг так, чтобы записанные на дугах цифры образовывали одинаковые числа.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .