Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

На стороне AB квадрата ABCD взята точка K, на стороне CD – точка L, на отрезке KL – точка M. Докажите, что вторая (отличная от M) точка пересечения окружностей, описанных около треугольников AKM и MLC, лежит на диагонали AC.

Вниз   Решение


Докажите, что число вида a0...09 – не полный квадрат (при любом числе нулей, начиная с одного; a – цифра, отличная от 0).

 

ВверхВниз   Решение


Через вершины A и B треугольника ABC проведены две прямые, которые разбивают его на четыре фигуры (три треугольника и один четырёхугольник). Известно, что три из этих фигур имеют одинаковую площадь. Докажите, что одна из этих фигур – четырёхугольник.

ВверхВниз   Решение


Впишите вместо звёздочек шесть различных цифр так, чтобы все дроби были несократимыми, а равенство верным:  .

ВверхВниз   Решение


Из бочки с водой в бочку с вином перелили стакан воды. Потом передумали и перелили обратно стакан вина. Чего больше: вина в воде или воды в вине?

ВверхВниз   Решение


Четыре кузнечика сидели в вершинах квадрата. Каждую секунду один из кузнечиков прыгает через другого в симметричную точку (если A прыгает через B в точку A1, то векторы     и     равны). Докажите, что три кузнечика не могут оказаться
  а) на одной прямой, параллельной стороне квадрата;
  б) на одной произвольной прямой.

 

ВверхВниз   Решение


Улицы города расположены в трёх направлениях, так что все кварталы – равные между собой равносторонние треугольники. Правила уличного движения таковы, что через перекресток можно проехать либо прямо, либо повернув влево или вправо на 120° в ближайшую улицу. Поворачивать разрешается только на перекрёстках. Две машины выехали друг за другом из одной точки в одном направлении и едут с одинаковой скоростью, придерживаясь этих правил. Может ли случиться, что через некоторое время они на какой-то улице (не на перекрёстке) встретятся?

ВверхВниз   Решение


Автор: Фольклор

На плоскости даны две окружности одна внутри другой. Построить такую точку O, что одна окружность получается из другой гомотетией относительно точки O (другими словами – чтобы растяжение плоскости от точки O с некоторым коэффициентом переводило одну окружность в другую).

ВверхВниз   Решение


Кошка ловит мышку в лабиринтах А, Б, В. Кошка ходит первой, начиная с узла, отмеченного буквой "К". Затем ходит мышка (из узла "М"), затем опять кошка и т. д. Из любого узла кошка и мышка ходят в любой соседний узел. Если в какой-то момент кошка и мышка оказываются в одном узле, кошка ест мышку. Сможет ли кошка поймать мышку в каждом из случаев А, Б, В?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 97879  (#1)

Темы:   [ Турниры и турнирные таблицы ]
[ Подсчет двумя способами ]
[ Средние величины ]
Сложность: 4-
Классы: 7,8,9

Автор: Фольклор

Восемь волейбольных команд провели турнир в один круг (каждая команда сыграла с каждой один раз). Доказать, что можно выделить такие четыре команды A, B, C и D, что A выиграла у B, C и D; B выиграла у C и D, C выиграла у D.

Прислать комментарий     Решение

Задача 97880  (#2)

 [Игра "кошки-мышки"]
Темы:   [ Симметричная стратегия ]
[ Шахматная раскраска ]
Сложность: 3
Классы: 7,8,9

Кошка ловит мышку в лабиринтах А, Б, В. Кошка ходит первой, начиная с узла, отмеченного буквой "К". Затем ходит мышка (из узла "М"), затем опять кошка и т. д. Из любого узла кошка и мышка ходят в любой соседний узел. Если в какой-то момент кошка и мышка оказываются в одном узле, кошка ест мышку. Сможет ли кошка поймать мышку в каждом из случаев А, Б, В?

Прислать комментарий     Решение

Задача 108612  (#3)

Темы:   [ Перегруппировка площадей ]
[ Концентрические окружности ]
Сложность: 3
Классы: 8,9

Учитель продиктовал классу задание, которое каждый ученик выполнил в своей тетради. Вот это задание:

  Нарисуйте две концентрические окружности радиусов 1 и 10. К малой окружности проведите три касательные так, чтобы их точки пересечения A, B и C лежали внутри большой окружности. Измерьте площадь S треугольника ABC и площади SA, SB и SC трёх образовавшихся криволинейных треугольников с вершинами в точках A, B и C. Найдите  SA + SB + SC – S.

Докажите, что у всех учеников (если они правильно выполнили задание) получились одинаковые результаты.

Прислать комментарий     Решение

Задача 97882  (#4)

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9

Автор: Фомин С.В.

Два шахматиста играют между собой в шахматы с часами (сделав ход, шахматист останавливает свои часы и пускает часы другого). Известно, что после того, как оба сделали по 40 ходов, часы обоих шахматистов показывали одно и то же время: 2 часа 30 мин.

  а) Докажите, что в ходе партии был момент, когда часы одного обгоняли часы другого не менее, чем на 1 мин. 51 сек.
  б) Можно ли утверждать, что в некоторый момент разница показаний часов была равна 2 мин.?

Прислать комментарий     Решение

Задача 34976  (#5)

Темы:   [ Дискретное распределение ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 7,8,9,10,11

Автор: Фомин С.В.

Двое бросают монету: один бросил ее 10 раз, другой – 11 раз.
Чему равна вероятность того, что у второго монета упала орлом большее число раз, чем у первого?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .