ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Турниры:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи p(x) – многочлен с целыми коэффициентами. Известно, что для некоторых целых a и b выполняется равенство: p(a) – p(b) = 1. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1703]
Решить в натуральных числах уравнение:
В шести корзинах лежат груши, сливы и яблоки. Число слив в каждой корзине равно числу яблок в остальных корзинах вместе взятых, а число яблок в каждой корзине равно числу груш в остальных корзинах вместе взятых. Докажите, что общее число фруктов делится на 31.
Натуральное число n записано в десятичной системе счисления. Известно, что если какая-то цифра входит в эту запись, то n делится нацело на эту цифру (0 в записи не встречается). Какое максимальное число различных цифр может содержать эта запись?
Докажите, что при любом a имеет место неравенство: 3(1 + a² + a4) ≥ (1 + a + a²)².
p(x) – многочлен с целыми коэффициентами. Известно, что для некоторых целых a и b выполняется равенство: p(a) – p(b) = 1.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1703] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|