ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Существует ли такой четырёхугольник, что любая диагональ делит его на два тупоугольных треугольника? 20 команд сыграли круговой турнир по волейболу. Известно, что число 2333 имеет 101 цифру и начинается с цифры 1. Сколько чисел в ряду 2, 4, 8, 16, ..., 2333 начинается с цифры 4? Даны два единичных куба с общим центром. Всегда ли можно занумеровать вершины каждого из кубов от $1$ до $8$ так, чтобы расстояние между любыми двумя вершинами с одинаковыми номерами не превышало $\frac{4}{5}$? А чтобы не превышало $\frac{13}{16}$? а) Из какого минимального числа кусков проволоки можно спаять каркас куба?
Докажите, что при любых x, y, z выполнено неравенство: x4 + y4 + z² + 1 ≥ 2x(xy² – x + z + 1). Окружности S1 и S2 пересекаются в точках A и B,
причем центр O окружности S1 лежит на S2. Прямая,
проходящая через точку O, пересекает отрезок AB в точке P,
а окружность S2 в точке C. Докажите, что точка P лежит
на поляре точки C относительно окружности S1.
Точка K – середина стороны AB квадрата ABCD, а точка L делит диагональ AC в отношении AL : LC = 3 : 1. Докажите, что угол KLD прямой. Найти все многочлены P(x), для которых справедливо тождество: xP(x – 1) ≡ (x – 26)P(x). Известно, что значения выражений b/a и b/c находятся в интервале (–0,9, –0,8). В каком интервале лежат значения выражения c/a? Можно ли построить три дома, вырыть три колодца и соединить тропинками каждый дом с каждым колодцем так, чтобы тропинки не пересекались? Можно ли разрезать квадрат 5×5 на прямоугольники двух видов: 1×4 и 1×3 так, чтобы получилось 7 прямоугольников? а) Докажите, что середины четырех общих касательных
к двум непересекающимся кругам лежат на одной прямой.
Докажите, что x² + y² + z² ≥ xy + yz + zx при любых x, y, z. Докажите, что для плоского графа справедливо неравенство 2E ≥ 3F. В строке записано несколько чисел. Каждую секунду робот выбирает какую-либо пару рядом стоящих чисел, в которой левое число больше правого, меняет их местами и при этом умножает оба числа на 2. Докажите, что через некоторое время сделать очередную такую операцию будет невозможно. |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]
В строке записано несколько чисел. Каждую секунду робот выбирает какую-либо пару рядом стоящих чисел, в которой левое число больше правого, меняет их местами и при этом умножает оба числа на 2. Докажите, что через некоторое время сделать очередную такую операцию будет невозможно.
Известно, что число 2333 имеет 101 цифру и начинается с цифры 1. Сколько чисел в ряду 2, 4, 8, 16, ..., 2333 начинается с цифры 4?
Все члены бесконечной арифметической прогрессии – натуральные числа. В каждом члене удалось подчеркнуть одну или несколько подряд идущих цифр так, что в первом члене оказалась подчёркнута цифра 1, во втором – 2,..., в 23-м – цифры 2 и 3 подряд, и так далее (для любого натурального n в n-м члене подчёркнутые цифры образовали число n). Докажите, что разность прогрессии – степень числа 10.
В ряд стоят 23 коробочки с шариками, причём для каждого числа n от 1 до 23 есть коробочка, в которой ровно n шариков. За одну операцию можно переложить в любую коробочку еще столько же шариков, сколько в ней уже есть, из какой-нибудь другой коробочки, в которой шариков больше. Всегда ли можно такими операциями добиться, чтобы в первой коробочке оказался 1 шарик, во второй – 2 шарика, ..., в 23-й – 23 шарика?
Колоду из 52 карт разложили в виде прямоугольника 13×4. Известно, что если две карты лежат рядом по вертикали или горизонтали, то они одной масти либо одного достоинства. Докажите, что в каждом горизонтальном ряду (из 13 карт) все карты одной масти.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке