Страница:
<< 76 77 78 79
80 81 82 >> [Всего задач: 1957]
|
|
Сложность: 3 Классы: 8,9,10
|
На тарелке лежат 9 разных кусочков сыра. Всегда ли можно разрезать один из них на две части так, чтобы полученные 10 кусочков делились бы на две порции равной массы по 5 кусочков в каждой?
|
|
Сложность: 3 Классы: 7,8,9
|
Является ли число 49 + 610 + 320 простым?
Дан равносторонний треугольник ABC. Для произвольной точки P
внутри треугольника рассмотрим точки A' и C' пересечения
прямых AP с BC и CP с AB. Найдите геометрическое место
точек P, для которых отрезки AA' и CC' равны.
Дана окружность с диаметром AB. Другая окружность с центром в точке A пересекает отрезок AB в точке C, причём AC < ½ AB. Общая касательная двух окружностей касается первой окружности в точке D. Докажите, что прямая CD перпендикулярна
AB.
|
|
Сложность: 3 Классы: 7,8,9
|
Докажите, что в любом выпуклом многоугольнике
имеется не более 35 углов, меньших
170
o .
Страница:
<< 76 77 78 79
80 81 82 >> [Всего задач: 1957]