Страница:
<< 84 85 86 87
88 89 90 >> [Всего задач: 1957]
|
|
Сложность: 3 Классы: 10,11
|
Из точки
M по плоскости с постоянной скоростью ползёт муравей. Его путь
представляет собой спираль, которая наматывается на точку
O и гомотетична
некоторой своей части относительно этой точки. Сможет ли муравей пройти весь
свой путь за конечное время?
|
|
Сложность: 3 Классы: 9,10,11
|
В треугольнике ABC проведены биссектрисы BB1 и
CC1. Известно, что центр описанной
окружности треугольника BB1C1 лежит на прямой AC.
Найдите угол C треугольника.
|
|
Сложность: 3+ Классы: 6,7,8
|
Улитка ползёт по плоскости с постоянной скоростью, каждые 15 минут поворачивая под прямым углом.
Докажите, что вернуться в исходную точку она сможет лишь через целое число часов.
Существует ли такое натуральное n, что n² + n + 1 делится на 1955?
Сколькими способами можно представить 1000000 в виде произведения трёх множителей, если произведения, отличающиеся порядком множителей,
а) считаются различными?
б) считаются тождественными?
Страница:
<< 84 85 86 87
88 89 90 >> [Всего задач: 1957]