|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Годы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Страница: << 107 108 109 110 111 112 113 >> [Всего задач: 1984]
Дано уравнение xn – a1xn–1 – a2xn–2 – ... – an–1x – an = 0, где a1 ≥ 0, a2 ≥ 0, an ≥ 0.
Доказать, что если p/q – несократимая рациональная дробь, являющаяся корнем полинома f(x) с целыми коэффициентами, то p – kq есть делитель числа f(k) при любом целом k.
Найти все числа, на которые может быть сократима при целом значении l дробь
Докажите, что система уравнений x1 – x2 = a, имеет хотя бы одно положительное решение тогда и только тогда, когда |a| + |b| < 1.
64 неотрицательных числа, сумма которых равна 1956, расположены в форме квадратной таблицы: по восемь чисел в каждой строке и в каждом столбце. Сумма чисел, стоящих на одной из диагоналей, равна 112. Числа, расположенные симметрично относительно этой диагонали, равны. Докажите, что сумма чисел в каждом столбце меньше 1035.
Страница: << 107 108 109 110 111 112 113 >> [Всего задач: 1984]
|
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|
Проект осуществляется при поддержке