Страница: << 120 121 122 123 124 125 126 >> [Всего задач: 1984]
|
|
|
Сложность: 3+ Классы: 9,10
|
На каждой стороне прямоугольного треугольника построено по квадрату (пифагоровы
штаны), и вся фигура вписана в круг. Для каких прямоугольных треугольников это
можно сделать?
|
|
|
Сложность: 3+ Классы: 8,9,10
|
Число 4 обладает тем свойством, что при делении его на q² остаток получается меньше q²/2, каково бы ни было q.
Перечислить все числа, обладающие этим свойством.
Доказать, что для любых трёх чисел, меньших 1000000, найдётся число, меньшее 100 (но большее 1), взаимно простое с каждым из них.
|
|
|
Сложность: 3+ Классы: 9,10
|
Выбрать 100 чисел, удовлетворяющих условиям x1 = 1, 0 ≤ x1 ≤ 2x1, 0 ≤ x3 ≤ 2x2, ..., 0 ≤ x99 ≤ 2x98, 0 ≤ x100 ≤ 2x99, так, чтобы выражение
x1 – x2 + x3 – x4 + ... + x99 – x100 было максимально.
По заданной последовательности положительных чисел q1,..., qn, ... строится последовательность многочленов следующим образом:
f0(x) = 1,
f1(x) = x,
...
fn+1(x) = (1 + qn)xfn(x) – qnfn–1(x).
Докажите, что все вещественные корни n-го многочлена заключены между –1 и
1.
Страница: << 120 121 122 123 124 125 126 >> [Всего задач: 1984]