Loading [MathJax]/extensions/tex2jax.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 120 121 122 123 124 125 126 >> [Всего задач: 1984]      



Задача 78620

Тема:   [ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 9,10

На каждой стороне прямоугольного треугольника построено по квадрату (пифагоровы штаны), и вся фигура вписана в круг. Для каких прямоугольных треугольников это можно сделать?
Прислать комментарий     Решение


Задача 78650

Темы:   [ Деление с остатком ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 3+
Классы: 8,9,10

Число 4 обладает тем свойством, что при делении его на q² остаток получается меньше q²/2, каково бы ни было q.
Перечислить все числа, обладающие этим свойством.

Прислать комментарий     Решение

Задача 78652

Темы:   [ НОД и НОК. Взаимная простота ]
[ Простые числа и их свойства ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Доказать, что для любых трёх чисел, меньших 1000000, найдётся число, меньшее 100 (но большее 1), взаимно простое с каждым из них.

Прислать комментарий     Решение

Задача 78657

Тема:   [ Линейные неравенства и системы неравенств ]
Сложность: 3+
Классы: 9,10

Выбрать 100 чисел, удовлетворяющих условиям  x1 = 1,  0 ≤ x1 ≤ 2x1,  0 ≤ x3 ≤ 2x2,  ...,  0 ≤ x99 ≤ 2x98,  0 ≤ x100 ≤ 2x99, так, чтобы выражение
x1x2 + x3x4 + ... + x99x100  было максимально.

Прислать комментарий     Решение

Задача 78667

Темы:   [ Алгебраические неравенства (прочее) ]
[ Индукция (прочее) ]
[ Свойства модуля. Неравенство треугольника ]
Сложность: 3+
Классы: 11

По заданной последовательности положительных чисел  q1,..., qn, ...  строится последовательность многочленов следующим образом:
    f0(x) = 1,
    f1(x) = x,
      ...
    fn+1(x) = (1 + qn)xfn(x) – qnfn–1(x).
Докажите, что все вещественные корни n-го многочлена заключены между –1 и 1.

Прислать комментарий     Решение

Страница: << 120 121 122 123 124 125 126 >> [Всего задач: 1984]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .