Страница: << 174 175 176 177 178 179 180 >> [Всего задач: 1982]
Колода перфокарт четырёх цветов разложена в один ряд. Если две перфокарты
одного цвета лежат рядом или через одну, то можно выбрасывать ту из них,
которая левее. Кроме того, можно подкладывать справа любое количество перфокарт
из других колод. Доказать, что можно подкладывать и выбрасывать перфокарты
таким образом, чтобы в конце концов их осталось только четыре.
С числом
123456789101112...9989991000 производится следующая операция:
зачёркиваются две соседние цифры a и b (a стоит перед b) и на их место
вставляется число a + 2b (можно в качестве a взять нуль, ``стоящий'' перед
числом, а в качестве b — первую цифру числа). С полученным числом
производится такая же операция и т.д. (Например, из числа 118 307 можно
на первом шаге получить числа 218 307, 38 307, 117 307,
111 407, 11 837, 118 314.) Доказать, что таким способом можно
получить число 1.
Двое играют в следующую игру. Каждый игрок по очереди вычёркивает 9 чисел (по
своему выбору) из последовательности 1, 2, 3, ..., 100, 101. После
одиннадцати таких вычёркиваний останутся два числа. Затем второй игрок
присуждает первому столько очков, какова разница между этими оставшимися
числами. Доказать, что первый игрок всегда сможет набрать по крайней мере 55
очков, как бы ни играл второй.
|
|
Сложность: 3+ Классы: 8,9,10
|
Из натуральных чисел составляются последовательности, в которых каждое
последующее число больше квадрата предыдущего, а последнее число в
последовательности равно 1969 (последовательности могут иметь разную длину).
Доказать, что различных последовательностей такого вида меньше чем 1969.
Доказать, что среди чисел [2k ·
] бесконечно много составных.
Страница: << 174 175 176 177 178 179 180 >> [Всего задач: 1982]