Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 1757]
|
|
Сложность: 3- Классы: 8,9,10,11
|
В последовательности действительных чисел $a_1$, $a_2$, $\dots$ каждое число, начиная с третьего, равно полусумме двух предыдущих. Докажите, что все параболы вида $y=x^2+a_nx+a_{n+1}$ (где $n=1$, $2$, $3$, $\dots$) имеют общую точку.
Найдите все натуральные числа, делящиеся на 30 и имеющие ровно 30 различных делителей.
175 шалтаев стоят дороже, чем 125 болтаев, но дешевле, чем 126 болтаев. Доказать, что на покупку трёх шалтаев и одного болтая не хватит:
а) 80 коп.;
б) одного рубля.
Решить в целых числах уравнение 2n + 7 = x².
|
|
Сложность: 3- Классы: 7,8,9
|
Даны два двузначных числа – X и Y. Известно, что X вдвое больше Y, одна цифра числа Y равна сумме, а другая – разности цифр числа X.
Найти эти числа.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 1757]