Страница: 1
2 3 4 5 6 7 >> [Всего задач: 48]
|
|
Сложность: 3 Классы: 8,9,10,11
|
Найдите все натуральные $n$, удовлетворяющие условию: числа $1, 2, 3, \ldots, 2n$ можно разбить на пары так, что если сложить числа в каждой паре и результаты перемножить, получится квадрат натурального числа.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Можно ли внутри правильного пятиугольника разместить отрезок, который из всех вершин виден под одним и тем же углом?
|
|
Сложность: 3 Классы: 8,9,10,11
|
В ряд выписаны несколько натуральных чисел с суммой 20.
Никакое число и никакая сумма нескольких подряд записанных чисел не равна 3.
Могло ли быть выписано больше 10 чисел?
|
|
Сложность: 3 Классы: 7,8,9,10,11
|
Перед Шариком лежит бесконечное число котлет, на каждой сидит по мухе.
На каждом ходу Шарик последовательно делает две операции:
1) съедает какую-то котлету вместе со всеми сидящими на ней мухами;
2) пересаживает одну муху с одной котлеты на другую (на котлете может быть сколько угодно мух).
Шарик хочет съесть не более миллиона мух. Докажите, что он не может действовать так, чтобы каждая котлета была съедена на каком-то ходу.
|
|
Сложность: 3+ Классы: 10,11
|
Про натуральные числа $x$, $y$ и $z$ известно, что $\operatorname{НОД}(x,y,z) = 1$ и $x^2+y^2+z^2=2(xy+yz+zx)$. Докажите, что $x$, $y$ и $z$ – квадраты натуральных чисел.
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 48]