Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Три окружности с центрами A, B и C, касающиеся друг друга и прямой l, расположены так, как показано на рисунке. Пусть a, b и c – радиусы окружностей с центрами A, B и C соответственно. Докажите, что .

Вниз   Решение


Постройте треугольник ABC, зная три точки A1, B1, C1, в которых биссектрисы его углов пересекают описанную окружность.

ВверхВниз   Решение


Даны две прямые, пересекающиеся в точке O. Найдите ГМТ X, для которых сумма длин проекций отрезков OX на эти прямые постоянна.

ВверхВниз   Решение


Дана четырёхугольная пирамида SABCD , основание которой – параллелограмм ABCD . Точки M , N и K лежат на ребрах AS , BS и CS соответственно, причём AM:MS = 1:2 , BN:NS = 1:3 , CK:KS = 1:1 . Постройте сечение пирамиды плоскостью MNK . В каком отношении эта плоскость делит ребро SD ?

ВверхВниз   Решение


Окружность касается стороны BC треугольника ABC в точке M, стороны AC — в точке N, а сторону AB пересекает в точках K и L, причём KLMN — квадрат. Найдите углы треугольника ABC.

ВверхВниз   Решение


Дана четырёугольная пирамида SABCD , основание которой – параллелограмм ABCD . Через середину ребра AB проведите плоскость, параллельную прямым AC и SD . В каком отношении эта плоскость делит ребро SB ?

Вверх   Решение

Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 1402]      



Задача 116295

Тема:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3
Классы: 8,9

На продолжениях сторон AB , BC , CD и DA выпуклого четырёхугольника ABCD за точки B , C , D и A соответственно отложены отрезки BB1 , CC1 , DD1 и AA1 , равные этим сторонам. Найдите площадь четырёхугольника A1B1C1D1 , если площадь четырёхугольника ABCD равна s .
Прислать комментарий     Решение


Задача 52934

Темы:   [ Площадь круга, сектора и сегмента ]
[ Вписанный угол равен половине центрального ]
Сложность: 3
Классы: 8,9

Хорды AB и AC равны между собой. Образованный ими вписанный в окружность угол равен 30o. Найдите отношение площади той части круга, которая заключена в этом угле, к площади всего круга.

Прислать комментарий     Решение


Задача 52935

Темы:   [ Площадь круга, сектора и сегмента ]
[ Вписанный угол равен половине центрального ]
Сложность: 3
Классы: 8,9

На основании равностороннего треугольника как на диаметре построена полуокружность, рассекающая треугольник на две части. Сторона треугольника равна a. Найдите площадь той части треугольника, которая лежит вне круга.

Прислать комментарий     Решение


Задача 52937

Темы:   [ Площадь круга, сектора и сегмента ]
[ Круг, сектор, сегмент и проч. ]
Сложность: 3
Классы: 8,9

Основание AC равнобедренного треугольника ABC является хордой окружности. Эта окружность касается прямых AB и BC в точках A и C соответственно. Известно, что $ \angle$ABC = 120o, AC = a. Найдите площадь той части треугольника, которая лежит в круге, ограниченном данной окружностью.

Прислать комментарий     Решение


Задача 55101

Тема:   [ Медиана делит площадь пополам ]
Сложность: 3
Классы: 8,9

Докажите, что если диагональ какого-нибудь четырёхугольника делит другую диагональ пополам, то она делит пополам и площадь четырёхугольника.

Прислать комментарий     Решение


Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 1402]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .