Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

На клетчатой бумаге написана таблица, причём в каждой клетке стоит число, равное среднему арифметическому четырёх чисел, стоящих в соседних клетках. Все числа в таблице различны. Докажите, что наибольшее число стоит с края (то есть по крайней мере одна из соседних клеток отсутствует).

Вниз   Решение


В выпуклом четырёхугольнике ABCD точка L является серединой стороны BC, точка M является серединой AD, точка N является серединой стороны AB. Найдите отношение площади треугольника LMN к площади четырёхугольника ABCD.

ВверхВниз   Решение


На плоскости дано  n > 4  точек, никакие три из которых не лежат на одной прямой.
Докажите, что существует не менее    различных выпуклых четырёхугольников с вершинами в этих точках.

ВверхВниз   Решение


Решить в целых числах уравнение  x² + y² + z² = 4(xy + yz + zx).

ВверхВниз   Решение


На стороне острого угла KOM взята точка L между O и K. Окружность проходит через точки K и L и касается луча OM в точке M. На дуге LM, не содержащей точки K, взята точка N. Расстояния от точки N до прямых OM, OK и KM равны m, k и l соответственно. Найдите расстояние от точки N до прямой LM.

ВверхВниз   Решение


Из точки A, расположенной вне окружности, проведены две касательные AM и AN (M и N — точки касания) и секущая, пересекающая окружность в точках P и Q. Пусть L — середина PQ. Докажите, что $ \angle$MLA = $ \angle$NLA.

ВверхВниз   Решение


Угол между радиусами OA и OB окружности равен 60°. Найдите хорду AB, если радиус окружности равен R.

ВверхВниз   Решение


Автор: Фольклор

Две точки окружности соединили ломаной, длина которой меньше диаметра окружности.
Докажите, что существует диаметр, не пересекающий эту ломаную.

ВверхВниз   Решение


10 человек собрали вместе 46 грибов, причём известно, что нет двух человек, собравших одинаковое число грибов.
Сколько грибов собрал каждый?

Вверх   Решение

Задачи

Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 563]      



Задача 110789

Темы:   [ Вписанные и описанные окружности ]
[ Симметрия помогает решить задачу ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Гомотетичные многоугольники ]
[ Гомотетия помогает решить задачу ]
Сложность: 5-
Классы: 8,9,10,11

Дан треугольник ABC и точка P внутри него. A' , B' , C' – проекции P на прямые BC , CA , AB . Докажите, что центр окружности, описанной около треугольника A'B'C' , лежит внутри треугольника ABC .
Прислать комментарий     Решение


Задача 111926

Темы:   [ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Свойства симметрий и осей симметрии ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Описанные четырехугольники ]
Сложность: 5-
Классы: 8,9,10

Через каждую вершину четырехугольника проведена прямая, проходящая через центр вписанной в него окружности. Три из этих прямых обладают тем свойством, что каждая из них делит площадь четырехугольника на две равновеликие части.
a) Докажите, что и четвертая прямая обладает тем же свойством.
б) Какие значения могут принимать углы этого четырехугольника, если один из них равен 72o ?
Прислать комментарий     Решение


Задача 66161

Темы:   [ Вписанные и описанные окружности ]
[ Свойства симметрий и осей симметрии ]
[ Три прямые, пересекающиеся в одной точке ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Величина угла между двумя хордами и двумя секущими ]
[ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
Сложность: 5-
Классы: 9,10,11

Неравнобедренный треугольник ABC вписан в окружность с центром O и описан около окружности с центром I. Точка B', симметричная точке B относительно прямой OI, лежит внутри угла ABI. Докажите, что касательные к описанной окружности треугольника BB'I, проведённые в точках B' и I, пересекаются на прямой AC.

Прислать комментарий     Решение

Задача 55673

Темы:   [ Симметрия и построения ]
[ Композиции симметрий ]
Сложность: 5
Классы: 8,9

С помощью циркуля и линейки впишите в данную окружность n-угольник, стороны которого соответственно параллельны n данным прямым.

Прислать комментарий     Решение


Задача 53134

 [Задача о бабочке]
Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Симметрия помогает решить задачу ]
[ Вспомогательная окружность ]
[ Применение проективных преобразований прямой в задачах на доказательство ]
Сложность: 5
Классы: 8,9,10,11

Пусть A – основание перпендикуляра, опущенного из центра данной окружности на данную прямую l. На этой прямой взяты еще две точки B и C так, что
AB = AC.  Через точки B и C проведены две произвольные секущие, из которых одна пересекает окружность в точках P и Q, вторая – в точках M и N. Пусть прямые PM и QN пересекают прямую l в точках R и S. Докажите, что  AR = AS.

Прислать комментарий     Решение

Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 563]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .