ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Точка D – середина гипотенузы AB прямоугольного треугольника ABC с катетами 3 и 4.
Найдите расстояние между центрами вписанных окружностей треугольников ACD и BCD.

Вниз   Решение


Внутри клетчатого прямоугольника периметра 50 клеток по границам клеток вырезана прямоугольная дырка периметра 32 клетки (дырка не содержит граничных клеток). Если разрезать эту фигуру по всем горизонтальным линиям сетки, получится 20 полосок шириной в 1 клетку. А сколько полосок получится, если вместо этого разрезать её по всем вертикальным линиям сетки? (Квадратик 1 × 1 — это тоже полоска!)

ВверхВниз   Решение


У Алисы в кармане шесть волшебных пирожков – два увеличивающих (съешь – вырастешь), а остальные уменьшающие (съешь – уменьшишься). Когда Алиса встретила Мэри Энн, она, не глядя, вынула из кармана три пирожка и отдала их Мэри. Найдите вероятность того, что у одной из девочек нет ни одного увеличивающего пирожка.

Вверх   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 241]      



Задача 57735

Тема:   [ Псевдоскалярное произведение ]
Сложность: 4
Классы: 8,9

Решите с помощью псевдоскалярного произведения задачу 4.29, б.
Прислать комментарий     Решение


Задача 108897

Темы:   [ Скалярное произведение. Соотношения ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 4
Классы: 8,9

Пусть O – центр окружности, описанной около равнобедренного треугольника ABC ( AB=AC ), D – середина стороны AB , а E – точка пересечения медиан треугольника ACD . Докажите, что OE CD .
Прислать комментарий     Решение


Задача 115330

Темы:   [ Векторы помогают решить задачу ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9

Внутри треугольника ABC выбрана произвольная точка X . Лучи AX , BX и CX пересекают описанную около треугольника ABC окружность в точках A1 , B1 и C1 соответственно. Точка A2 симметрична точке A1 относительно середины стороны BC . Аналогично определяются точки B2 и C2 . Докажите, что найдётся такая фиксированная точка Y , не зависящая от выбора X , что точки Y , A2 , B2 и C2 лежат на одной окружности.
Прислать комментарий     Решение


Задача 115721

Темы:   [ Векторы помогают решить задачу ]
[ Геометрические неравенства ]
Сложность: 4
Классы: 8,9

Докажите, что разность квадратов соседних сторон параллелограмма меньше произведения его диагоналей.
Прислать комментарий     Решение


Задача 67367

Темы:   [ Векторы помогают решить задачу ]
[ Теорема Птолемея ]
[ Теорема косинусов ]
Сложность: 4
Классы: 9,10,11

Автор: Шекера А.

Даны 4 точки на плоскости $A$, $B$, $C$, $D$, не образующие прямоугольник. Пусть стороны треугольника $T$ равны $AB+CD$, $AC+BD$, $AD+BC$. Докажите, что $T$ – остроугольный.
Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 241]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .