Страница:
<< 90 91 92 93
94 95 96 >> [Всего задач: 2247]
Четырёхугольник ABCD вписанный, M – точка пересечения прямых AB и CD, N – точка пересечения прямых BC и AD. Известно, что BM = DN.
Докажите, что CM = CN.
На стороне AB параллелограмма ABCD (или на её продолжении) взята точка M, для которой ∠MAD = ∠AMO, где O – точка пересечения диагоналей параллелограмма. Докажите, что MD = MC.
На сторонах AB, BC, CD, DA параллелограмма ABCD взяты
соответственно точки M, N, K, L, делящие эти стороны в одном и том
же отношении (при обходе по часовой стрелке). Докажите, что KLMN –
параллелограмм, причём его центр совпадает с центром параллелограмма ABCD.
На боковых сторонах AB и CD трапеции ABCD отмечены точки P и Q так, что прямая PQ параллельна AD, а отрезок PQ делится диагоналями трапеции на три равные части. Найдите длину оонования BC, если известно, что AD = a, PQ = m, а точка пересечения диагоналей трапеции лежит внутри четырёхугольника BPCQ.
|
|
Сложность: 3+ Классы: 7,8,9
|
Найти равнобедренные трапеции, которые разбиваются диагональю на два равнобедренных треугольника.
Страница:
<< 90 91 92 93
94 95 96 >> [Всего задач: 2247]