Страница:
<< 184 185 186 187
188 189 190 >> [Всего задач: 1221]
|
|
Сложность: 4- Классы: 9,10,11
|
Решите в целых числах уравнение (x² – y²)² = 16y + 1.
|
|
Сложность: 4- Классы: 10,11
|
Пусть n > 1 – натуральное число. Выпишем дроби 1/n, 2/n, ...,
n–1/n и приведём каждую к несократимому виду; сумму числителей полученных дробей обозначим через f(n). При каких натуральных n > 1 числа f(n) и f(2015n) имеют
разную чётность?
|
|
Сложность: 4- Классы: 8,9,10
|
В выпуклом n-угольнике провели несколько диагоналей так, что ни в какой точке внутри многоугольника не пересеклись три или более из них. В результате многоугольник разбился на треугольники. Каково наибольшее возможное число треугольников?
|
|
Сложность: 4- Классы: 8,9,10,11
|
Капитан Врунгель в своей каюте разложил перетасованную колоду из 52 карт по кругу, оставив одно место свободным. Матрос Фукс с палубы, не отходя от штурвала и не зная начальной раскладки, называет карту. Если эта карта лежит рядом со свободным местом, Врунгель её туда передвигает, не сообщая Фуксу. Иначе ничего не происходит. Потом Фукс называет еще одну карту, и так сколько угодно раз, пока он не скажет “стоп”. Может ли Фукс добиться того, чтобы после слова "стоп"
а) каждая карта наверняка оказалась не там, где была вначале?
б) рядом со свободным местом наверняка не было туза пик?
|
|
Сложность: 4- Классы: 10,11
|
Если в каждой вершине выпуклого многогранника сходятся не менее чем четыре ребра, то хотя бы одна из его граней – треугольник.
Докажите это.
Страница:
<< 184 185 186 187
188 189 190 >> [Всего задач: 1221]