ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 151]      



Задача 65778

Темы:   [ Непрерывное распределение ]
[ Условная вероятность ]
[ Объем призмы ]
[ Объем тетраэдра и пирамиды ]
Сложность: 4-
Классы: 10,11

Расследуя одно дело, следователь Башковицкий обнаружил, что ключевой свидетель – тот из семьи Петровых, кто в тот роковой день пришёл домой прежде прочих. Расследование выявило следующие факты.
  1. Соседка Марья Кузьминична хотела одолжить у Петровых соли, звонила им в дверь, но никто не открыл. Во сколько? Да кто ж знает? Темно уж было...
  2. Галина Ефимовна Петрова, придя вечером домой, обнаружила обоих детей на кухне, а мужа на диване – у него болела голова.
  3. Муж Анатолий Иванович заявил, что как пришёл, сразу лёг на диван и задремал, никого не видел, ничего не слышал, соседка точно не приходила – звонок бы его разбудил.
  4. Дочь Светлана сказала, что, вернувшись домой, сразу ушла к себе в комнату, про отца ничего не знает, но в прихожей, как всегда, споткнулась о Димкин ботинок.
  5. Дмитрий когда пришёл – не помнит, отца не видел, а как Светка ругалась из-за ботинка – слышал.
  "Ага, – задумался Башковицкий. – Какова же вероятность того, что Дмитрий вернулся домой раньше отца?"

Прислать комментарий     Решение

Задача 67475

Темы:   [ Прямая призма ]
[ Построение сечений ]
[ Объем тела равен сумме объемов его частей ]
[ Объем тетраэдра и пирамиды ]
Сложность: 4
Классы: 10,11

Основанием прямой треугольной призмы $ABCA_1B_1C_1$ служит прямоугольный треугольник $ABC$ с прямым углом $C$. Чему равно отношение объёмов (меньшего к большему), в котором призму делит плоскость, проходящая через середины рёбер $AA_1$, $A_1C_1$ и $BC$, если длины этих рёбер равны?
Прислать комментарий     Решение


Задача 87027

Темы:   [ Cкрещивающиеся прямые, угол между ними ]
[ Расстояние между скрещивающимися прямыми ]
[ Достроение тетраэдра до параллелепипеда ]
[ Объем помогает решить задачу ]
[ Объем тетраэдра и пирамиды ]
[ Объем параллелепипеда ]
Сложность: 4-
Классы: 10,11

На скрещивающихся прямых l и m взяты отрезки AB и CD соответственно. Докажите, что объём пирамиды ABCD не зависит от положения отрезков AB и CD на этих прямых. Найдите этот объём, если AB = a , CD = b , а угол и расстояние между прямыми l и m равны соответственно α и c .
Прислать комментарий     Решение


Задача 87028

Темы:   [ Свойства сечений ]
[ Отношение объемов ]
[ Скрещивающиеся прямые и ГМТ ]
[ Проектирование помогает решить задачу ]
[ Признаки и свойства параллелограмма ]
[ Объем тетраэдра и пирамиды ]
Сложность: 4
Классы: 10,11

Докажите, что плоскость, проходящая через середины двух противоположных рёбер любой треугольной пирамиды, делит её объём пополам.
Прислать комментарий     Решение


Задача 116517

Темы:   [ Расстояние между скрещивающимися прямыми ]
[ Куб ]
[ Подобные треугольники (прочее) ]
[ Уравнение плоскости ]
[ Теорема о трех перпендикулярах ]
[ Объем тетраэдра и пирамиды ]
[ Теорема косинусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4
Классы: 10,11

В кубе ABCDA1B1C1D1, ребро которого равно 6, точки M и N – середины рёбер AB и B1C1 соответственно, а точка K расположена на ребре DC так, что
DK = 2KC.  Найдите
  а) расстояние от точки N до прямой AK;
  б) расстояние между прямыми MN и AK;
  в) расстояние от точки A1 до плоскости треугольника MNK.

Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 151]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .