Страница:
<< 35 36 37 38
39 40 41 >> [Всего задач: 499]
|
|
Сложность: 4- Классы: 9,10,11
|
Окружность ω описана около остроугольного треугольника ABC. На стороне AB выбрана точка D, а на стороне BC – точка E так, что DE || AC. Точки P и Q на меньшей дуге AC окружности ω таковы, что DP || EQ. Лучи QA и PC пересекают прямую DE в точках X и Y соответственно. Докажите, что ∠XBY + ∠PBQ = 180°.
|
|
Сложность: 4- Классы: 8,9,10
|
Дан остроугольный треугольник $ABC$. Точка $P$ выбрана так, что $AP=AB$ и $PB \parallel AC$. Точка $Q$ выбрана так, что $AQ=AC$ и $CQ \parallel AB$. Отрезки $CP$ и $BQ$ пересекаются в точке $X$. Докажите, что центр описанной окружности треугольника $ABC$ лежит на окружности $(PXQ)$.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Четырёхугольник $ABCD$ вписан в окружность ω с центром в точке $O$. Описанная окружность Ω треугольника $AOC$ пересекает вторично прямые $AB, BC, CD$ и $DA$ в точках $M, N, K$ и $L$ соответственно. Докажите, что прямые $MN, KL$ и касательные, проведённые к ω в точках $A$ и $C$, касаются одной окружности.
Через точку A общей хорды BC пересекающихся окружностей проведена прямая, пересекающая окружности в таких точках D и E соответственно, что прямая BD касается одной окружности, а прямая BE – другой. Продолжение хорды CD одной окружности пересекает другую окружность в точке F.
а) Найдите отношение BD : BE, если AD = 8 и AE = 2.
б) Сравните площади треугольников BDE и BDF.
В треугольнике ABC отмечена точка O и из неё опущены
перпендикуляры OA1, OB1, OC1 на стороны BC, AC, AB соответственно. Пусть A2, B2, C2 – вторые точки пересечения прямых AO, BO, CO с описанной окружностью треугольника ABC. Докажите, что треугольники A1B1C1 и A2B2C2 подобны.
Страница:
<< 35 36 37 38
39 40 41 >> [Всего задач: 499]